Hypothalamic nesfatin-1, derived from the nucleobindin2 (NUCB2) precursor, inhibits nocturnal food intake and body weight gain in rats. Nesfatin-1 is able to cross the blood-brain barrier, suggesting a peripheral source of nesfatin-1. Many centrally acting food intake regulatory neuropeptides are also produced in the periphery, especially in the gastrointestinal tract. Therefore, we investigated the gene expression of NUCB2 and distribution of nesfatin-1-immunoreactive cells in the stomach. Microarray mRNA expression profiles in purified small endocrine cells of the gastric mucosa substantiated by quantitative RT-PCR showed significantly higher NUCB2 mRNA expression compared with brain and heart. Western blot confirmed the expression of NUCB2 protein and its transport into a secretory soluble fraction of gastric mucosal endocrine cell homogenates. Immunohistochemical colabeling for nesfatin-1 and ghrelin, histidine decarboxylase, or somatostatin revealed two subtypes of nesfatin-1-positive endocrine cells. Cells in the midportion of the glands coexpressed nesfatin-1 and ghrelin, whereas few cells in the glandular base coexpressed nesfatin-1 and somatostatin or histidine decarboxylase. High-resolution three-dimensional volume imaging revealed two separate populations of intracytoplasmic vesicles in these cells, one containing nesfatin-1 and the other ghrelin immunoreactivity. Microarray rat genome expression data of NUCB2 in small gastric endocrine cells confirmed by quantitative RT-PCR showed significant down-regulation of NUCB2 after 24 h fasting. In summary, NUCB2 mRNA expression as well as protein content is present in a specific subset of gastric endocrine cells, most of which coexpress ghrelin. NUCB2 gene expression is significantly regulated by nutritional status, suggesting a regulatory role of peripheral nesfatin-1 in energy homeostasis.
Nesfatin-1, derived from nucleobindin2, is expressed in the hypothalamus and reported in one study to reduce food intake (FI) in rats. To characterize the central anorexigenic action of nesfatin-1 and whether gastric emptying (GE) is altered, we injected nesfatin-1 into the lateral brain ventricle (intracerebroventricular, icv) or fourth ventricle (4v) in chronically cannulated rats or into the cisterna magna (intracisternal, ic) under short anesthesia and compared with ip injection. Nesfatin-1 (0.05 μg/rat, icv) decreased 2–3 h and 3–6 h dark-phase FI by 87 and 45%, respectively, whereas ip administration (2 μg/rat) had no effect. The corticotropin-releasing factor (CRF)1/CRF2 antagonist astressin-B or the CRF2 antagonist astressin2-B abolished icv nesfatin-1’s anorexigenic action, whereas an astressin2-B analog, devoid of CRF-receptor binding affinity, did not. Nesfatin-1 icv induced a dose-dependent reduction of GE by 26 and 43% that was not modified by icv astressin2-B. Nesfatin-1 into the 4v (0.05 μg/rat) or ic (0.5 μg/rat) decreased cumulative dark-phase FI by 29 and 60% at 1 h and by 41 and 37% between 3 and 5 h, respectively. This effect was neither altered by ic astressin2-B nor associated with changes in GE. Cholecystokinin (ip) induced Fos expression in 43% of nesfatin-1 neurons in the paraventricular hypothalamic nucleus and 24% of those in the nucleus tractus solitarius. These data indicate that nesfatin-1 acts centrally to reduce dark phase FI through CRF2-receptor-dependent pathways after forebrain injection and CRF2-receptor-independent pathways after hindbrain injection. Activation of nesfatin-1 neurons by cholecystokinin at sites regulating food intake may suggest a role in gut peptide satiation effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.