Background and purpose:The aim of this study was to investigate the effect of chronic treatment with antihypertensive and non-antihypertensive doses of zofenopril on cardiovascular changes in spontaneously hypertensive rats (SHR). Experimental approach: Male SHR were treated with 0.5 or 10 mg·kg -1 per day of zofenopril (Z0.5 and Z10) for 3 months. SHR and Wistar-Kyoto rats (WKY) receiving vehicle were used as controls. Systolic blood pressure was measured using the tail cuff method. Left ventricular weight/body weight ratio was calculated as cardiac hypertrophy index. Angiotensin converting enzyme (ACE) activity was determined in plasma and tissues by a fluorimetric method. Vascular reactivity was evaluated on aortic rings by acetylcholine and sodium nitroprusside relaxations. Effects on vascular structure were assessed by lumen diameter, wall thickness and medial cross-sectional area determination. Superoxide anion generation was quantified using lucigenin-amplified chemiluminescence in aorta. Results: Long-term daily administration of zofenopril (10 mg·kg -1 ) to SHR reduced blood pressure to WKY values, decreased cardiac hypertrophy, improved the acetylcholine-induced relaxant response and reversed the vascular remodelling. ACE inhibition and antioxidant activity were involved in these effects. 0.5 mg·kg -1 per day of zofenopril slightly modified blood pressure and the other effects were weaker. Conclusions and implications: Antihypertensive effects of chronic treatment with zofenopril were accompanied by recovery of endothelial function and improvement of cardiovascular structure. Low-dose zofenopril had little effect on blood pressure, with some benefits on cardiovascular structure and function. Inhibition of ACE and antioxidant activity were involved in these effects.
Although depression and cardiovascular diseases are related, the role of antidepressants such as fluoxetine (increasing serotonin levels) within cardiac regulation remains unclear. We aimed to determine whether fluoxetine modifies the pharmacological profile of serotonergic influence on vagal cardiac outflow. Rats were treated with fluoxetine (10 mg/kg per day; p.o.) for 14 days or equivalent volumes of drinking water (control group); then, they were pithed and prepared for vagal stimulation. Bradycardic responses were obtained by electrical stimulation of the vagal fibers (3, 6, and 9 Hz) or i.v. acetylcholine (ACh; 1, 5, and 10 μg/kg). The i.v. administration of 5-hydroxytryptamine (5-HT; 10 and 50 μg/kg) inhibited the vagally induced bradycardia. 5-CT (5-HT1/7 agonist) and L-694,247 (5-HT1D agonist) mimicked the serotonin inhibitory effect while α-methyl-5-HT (5-HT2 agonist) was devoid of any action. SB269970 (5-HT7 antagonist) did not abolish 5-CT inhibitory action on the electrically induced bradycardia. Pretreatment with LY310762 (5-HT1D antagonist) blocked the effects induced by L-694,247 and 5-CT. 5-HT and 5-CT failed to modify the bradycardia induced by exogenous ACh. Our outcomes suggest that fluoxetine treatment modifies 5-HT modulation on heart parasympathetic neurotransmission in rats, evoking inhibition of the bradycardia via prejunctional 5-HT1D in pithed rats.
5-hydroxytryptamine (5-HT) modulates noradrenergic activity in different cardiovascular territories, but its effect on the mesenteric vasopressor outflow has not yet been clarified. This study investigated the in vivo serotonergic influence, characterizing 5-HT receptors implicated, in sympathetic innervation of mesenteric vasculature. Wistar rats were anaesthetised and prepared for the in situ autoperfused rat mesentery, monitoring systemic blood pressure (SBP), heart rate (HR) and mesenteric perfusion pressure (MPP). Electrical stimulation of mesenteric sympathetic nerves resulted in frequency-dependent increases in MPP (9 ± 1.6, 25.7 ± 3.9 and 60.2 ± 5 mmHg for 2, 4 and 8 Hz, respectively), without altering SBP or HR. 5-HT (1-25 μg/kg), 5-carboxamidotryptamine (5-HT agonist; 25 μg/kg) or L-694,247 (5-HT agonist; 1-25 μg/kg) i.a. bolus inhibited vasopressor responses by mesenteric nerves electrical stimulation, unlike i.a. bolus of agonists 8-OH-DPAT (5-HT ), CGS-12066B (5-HT ), BRL 54443 (5-HT ), α-methyl-5-HT (5-HT ), 1-PBG (5-HT ), cisapride (5-HT ) or AS-19 (5-HT ) (25 μg/kg each). Interestingly, i.a. L-694,247 (25 μg/kg) also reduced the exogenous norepinephrine-induced vasoconstrictions. Pretreatment with selective 5-HT receptor antagonist, LY310762 (1 mg/kg, i.v.), completely abolished L-694,247- and 5-HT-induced mesenteric sympathoinhibition. Furthermore, ELISA analysis confirmed 5-HT receptors expression in mesenteric artery. These findings suggest that serotonergic mechanisms-induced sympathoinhibition of mesenteric noradrenergic outflow is mediated by pre and/or postjunctional 5-HT receptors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.