We have studied the effects of interleukin-6 (IL-6) on human epidermal keratinocytes by using serum-free culture conditions that allow the serial transfer, differentiation, and formation of well-organized multilayered epithelia. IL-6 at 2.5 ng/ml or higher concentrations promoted keratinocyte proliferation, with an ED(50) of about 15 ng/ml and a maximum effect at 50 ng/ml. IL-6 was 10-fold less potent than epidermal growth factor (EGF) or transforming growth factor-alpha (TGF-alpha) and supported keratinocyte growth for up to eight cumulative cell generations. IL-6-treated keratinocytes formed highly stratified colonies with a narrower proliferative/migratory rim than those keratinocytes stimulated with EGF or TGF-alpha; confluent epithelial sheets treated with IL-6 also underwent an increase in the number of cell layers. We also examined the effect of IL-6 on the keratin cytoskeleton. Immunostaining with anti-K16 monoclonal antibodies showed that the keratin network was aggregated and reorganized around cell nucleus and that this was not attributable to changes in keratin levels. This is the first report concerning the induction of the reorganization of keratin intermediate filaments by IL-6 in human epidermal keratinocytes.
Pax-6 is a regulatory gene with a major role during visual system development, but its association with corneal epithelial differentiation is not clearly established. Using the RCE1-(5T5) cell line, which mimics corneal epithelial differentiation, we analyzed Pax-6 biological role. Immunostaining of proliferating colonies and confluent sheets showed that Pax-6-positive cells were also K3 keratin-positive, suggesting that Pax-6 is expressed in differentiating cells. Pax-6 mRNA was barely expressed in early cell cultures; but after confluence, its levels raised up to fivefold as demonstrated by Northern blot and RT-qPCR. The raise in Pax-6 expression preceded for 9 h the increase in LDH-H and LDH-M mRNAs, previously shown as early markers of corneal epithelial cell differentiation. The full-length mRNAs encoding for the two major Pax-6 isoforms were found at very low levels in proliferating cells, and abundantly expressed in the confluent stratified epithelia; Pax-6 mRNA was 2- to 2.5-fold more abundant than Pax-6(5a) mRNA. The ectopic expression of Pax-6 or Pax-6(5a) decreased proliferative ability leading to the formation of abortive, non-proliferative colonies. In contrast, culture conditions that delay or block corneal epithelial cell differentiation reduced or inhibited the expression of Pax-6. Collectively, results show that Pax-6 is the earlier differentiation marker expressed by corneal epithelial cells, and open the possibility for a major role of Pax-6 as the main driver of the differentiation of corneal epithelial cells.
The role of vimentin (Vim) in diploid epithelial cells is not well known. To understand its biological function, we cultured human epidermal keratinocytes under conditions that support migration, proliferation, stratification and terminal differentiation. We identified a keratinocyte subpopulation that shows a p63(+)/α5β1(bright) phenotype and displays Vim intermediate filaments (IFs) besides their keratin IF network. These cells were mainly located at the proliferative/migratory rim of the growing colonies; but also, they were scarce and scattered or formed small groups of basal cells in confluent stratified epithelia. Stimulation of cells with EGF and wounding experiments in confluent arrested epithelia increased the number of Vim(+) keratinocytes in an extent higher to the expected for a cell population doubling. BrdU labeling demonstrated that most of the proliferative cells located at the migratory border of the colony have Vim, in contrast with proliferative cells located at the basal layer at the center of big colonies which lacked of Vim IFs, suggesting that Vim expression was not solely linked to proliferation. Therefore, we silenced Vim mRNA in the cultured keratinocytes and observed an inhibition of colony growth. Such results, together with long-term cultivation assays which showed that Vim might be associated to pattern formation in cultured epithelia, suggest that Vim expression is essential for a highly motile phenotype, which is necessary for keratinocyte colony growth and possibly for development and wound healing. Vim(+)/p63(+)/α5β1(bright) epithelial cells may play a significant physiological role in embryonic morphogenetic movements; wound healing and other pathologies such as carcinomas and hyperproliferative diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.