The Breast Cancer Resistance Protein (BCRP/ABCG2) is a transporter restricting absorption and enhancing excretion of many compounds including anticancer drugs. This transporter is highly expressed in many tissues; however, in human kidney, only the mRNA was found in contrast to the mouse kidney, where the transporter is abundant. In bcrp/abcg2((-/-)) mice, the expression of two sterol transporter genes, abcg5 and abcg8, was strongly increased in the kidney, perhaps as a compensatory mechanism to upregulate efflux. We found using immunohistochemical analysis clear localization of BCRP/ABCG2 to the proximal tubule brush border membrane of the human kidney comparable to that of other ABC transporters such as P-glycoprotein/ABCB1, MRP2/ABCC2, and MRP4/ABCC4. Hoechst 33342 dye efflux from primary human proximal tubule cells was significantly reduced by the BCRP/ABCG2 inhibitors fumitremorgin C and nelfinavir. Our study shows that in addition to other apical ABC transporters, BCRP/ABCG2 may be important in renal drug excretion.
ATP binding cassette (ABC) transporters are ATP-dependent membrane proteins predominantly expressed in excretory organs, such as the liver, intestine, blood-brain barrier, blood-testes barrier, placenta, and kidney. Here, they play an important role in the absorption, distribution, and excretion of drugs, xenobiotics, and endogenous compounds. In addition, the ABC transporters, P-glycoprotein (P-gp/ABCB1) and breast cancer resistance protein (BCRP/ABCG2), are highly expressed in a population of primitive stem cells: the side population (SP). SP cells were originally discovered in bone marrow by their capacity to exclude rhodamine 123 and Hoechst dye 33342; however, extensive research also revealed their presence in other nonhematopoietic tissues. The expression levels of BCRP and P-gp are tightly controlled and may determine the differentiation of SP cells toward other more specialized cell types. Although their exact function in these cells is still not clear, they may protect the cells by pumping out toxicants and harmful products of oxidative stress. Transplantation studies in animals revealed that bone marrow-derived SP cells contribute to organ repopulation and tissue repair after damage, e.g., in liver and heart. The role of SP cells in regeneration of damaged kidney segments is not yet clarified. This review focuses on the role of ABC transporters in tissue defense and regeneration, with specific attention to P-gp and BCRP in organ regeneration and repair.
Renal ATP binding cassette (ABC) transporters have an important role in the elimination of metabolic waste products and compounds foreign to the body. The kidney has the ability to tightly control the expression of these efflux transporters to maintain homeostasis, and as a major mechanism of adaptation to environmental stress. In the present study, we investigated the expression of 45 ABC transporter genes in the mouse kidney under basal conditions, after induction of ischemia and after regeneration. Two days after clamping, mice showed a 76% decrease in renal creatinine clearance, which improved clearly within 7 days. This was confirmed by histological examinations. Seven days after ischemia, real-time quantitative Polymerase chain reaction data showed that transcript abundance of abcb1, abcb11, and abcc4 was increased, and that of abca3, abcc2, and abcg2 decreased. Expression of all transporters returned to baseline after 14 days, except for abcb11, which was reduced. Abcb11 is the major liver canalicular bile salt export pump. Here we show for the first time expression in the kidney and localization of the transporter to the apical membrane of proximal tubules. The presence of another novel renal transporter, abca3, was confirmed by Western blotting. Immunohistochemistry showed that abca3 is localized to the peritubular capillaries and apical membrane of proximal tubules. In conclusion, after inducing ischemic reperfusion injury in the kidney, ABC transporters appear to be differentially regulated, which might be associated with the renal regeneration process. Furthermore, we showed for the first time expression and subcellular localization of abcb11 and abca3 in mouse kidney.
The multidrug resistance gene 1 product, P-glycoprotein (P-gp), is expressed in several excretory organs, including the apical membrane of proximal tubules. After inducing acute renal failure, P-gp expression is upregulated and this might be a protective function by pumping out toxicants and harmful products of oxidative stress. We characterized renal function of P-gp knockout mice and studied its consequences in renal ischemic damage. Compared with wild-type mice, knockout mice have a lower glomerular filtration rate and renal plasma flow. An augmented urinary excretion of sodium, numerous amino acids, calcium, glucose, and low molecular weight proteins was observed along with an increased diuresis. A higher lithium plasma clearance in the knockout mice suggested proximal tubular dysfunction. Electron microscopy showed mitochondrial abnormalities in proximal tubular cells that could account for decreased adenosine triphosphate levels in the cortex. After inducing ischemia, wild-type mice showed a decrease in creatinine clearance and severe proximal tubular necrosis. In contrast, knockout mice had no signs of tubular damage. Our data indicate that P-gp knockout mice have impaired renal function but are protected against ischemic renal injury.
Our findings provide new insights into the short-term interaction of SJW with P-glycoprotein at the blood-brain barrier. They are of potential relevance given the wide use of SJW as OTC medication and the importance P-glycoprotein has for CNS therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.