The epidemiology of vector transmitted plant diseases is highly influenced by dispersal and the host-plant range of the vector. Widening the vector's host range may increase transmission potential, whereas specialization may induce specific disease cycles. The process leading to a vector's host shift and its epidemiological outcome is therefore embedded in the frameworks of sympatric evolution vs. immigration of preadapted populations. In this study, we analyse whether a host shift of the stolbur phytoplasma vector, Hyalesthes obsoletus from field bindweed to stinging nettle in its northern distribution range evolved sympatrically or by immigration. The exploitation of stinging nettle has led to outbreaks of the grapevine disease bois noir caused by a stinging nettle-specific phytoplasma strain. Microsatellite data from populations from northern and ancestral ranges provide strong evidence for sympatric host-race evolution in the northern range: Host-plant associated populations were significantly differentiated among syntopic sites (0.054 < F(HT) < 0.098) and constant over 5 years. While gene flow was asymmetric from the old into the predicted new host race, which had significantly reduced genetic diversity, the genetic identity between syntopic host-race populations in the northern range was higher than between these populations and syntopic populations in ancestral ranges, where there was no evidence for genetic host races. Although immigration was detected in the northern field bindweed population, it cannot explain host-race diversification but suggests the introduction of a stinging nettle-specific phytoplasma strain by plant-unspecific vectors. The evolution of host races in the northern range has led to specific vector-based bois noir disease cycles.
The quagga mussel Dreissena rostriformis bugensis, native to the Dnieper and the northern Black Sea, has become a major invasive species in both the Volga River and the North American Great Lakes since the early 1990s. Findings in the Netherlands (2006) and Germany (2007) mark the start of its establishment in Western Europe. We investigated the current distribution, time of first arrival and population structure of D. rostriformis bugensis from the rivers Rhine, Main and in the Main-Danube canal in Germany. Two putative sources of the German populations were analysed by genetically comparing these populations to older invasive populations from North America and the southeast Danube. Dreissena rostriformis bugensis was abundant in the Main and in three Rhine harbours, but rare in the actual Rhine river and absent south of the Main-Danube canal. Mussels found in the Rhine harbours were significantly smaller than in the Main. Population genetic analyses found no sign of founder effects and minimal differentiation between German, North American and southeast Danube populations. The genetic data suggest that these invasive populations derive from a common and rapidly expanding source. Based on the non-continuous distribution and shell size differences of Rhine harbour and Main populations, our results indicate that expansion in Germany involved at least two independent settling events, one of which happened before 2005, and most likely was caused by jump dispersal.
Seven polymorphic microsatellite loci were developed for the planthopper Hyalesthes obsoletus, vector of stolbur 16SrXII-A phytoplasma. The loci have di-or trinucleotide repeat motifs and are highly variable with 10 to 22 alleles per locus. Observed heterozygosity ranged from 0.278 to 0.950 for the 78 individuals genotyped. One locus is sex-linked. No linkage between loci was found. All loci amplified consistently among phylogeographic as well as host-plant related samples and proved highly informative for population genetic studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.