To improve the mechanical performance and to address current shortcomings of adhesive bonds such as bond degradation due to aging, a pulsed laser surface pretreatment of the metal surfaces of aluminum AW 6082-T6 joints with epoxy adhesive E320 is investigated. The surface treatment of the specimens resulted in increased single-lap shear (SLS) strengths before and after hydrothermal aging in 80 °C hot water compared to non-pretreated reference specimens. In order to reveal the correlations of laser parameters, resulting surface morphologies and the SLS strength, differently laser pretreated surfaces were characterized at the micro-and nanoscale using optical and scanning electron microscopies. The surface enlargement was quantified with a digital image analysis of cross-sections prepared from the joint interfaces. An analysis of variances (ANOVA) of the SLS results indicated that the laser parameters power and pulse frequency were most critical for obtaining high SLS strengths. Pretreated joint surfaces with a high micro-and nano-surface enlargement and deep solidification structures provide high SLS strengths of up to 50 MPa and almost negligible aging losses of merely 4%. Undercut structures on the pretreated surfaces were found to be beneficial for the mechanical and aging properties when only limited micro-and nanostructuring was applied.
A comparative study of a model adhesive interface formed between laser-pretreated Ti15-3-3-3 and the thermoplastic polymer PEEK has been carried out in order to characterize the interfaces' structural details and the infiltration of the surface nano-oxide by the polymer at multiple scales. Destructive approaches such as scanning and transmission electron microscopy of microsections prepared by focused ion beam, and non-destructive imaging approaches including laser scanning and scanning electron microscopy of pretreated surfaces 1 as well as synchrotron computed tomography techniques (micro-and ptychographic tomographies) were employed for resolving the large, µm-sized melt-structures and the fine nano-oxide substructure within the buried interface. Scanning electron microscopy showed that the fine, open-porous nano-oxide homogeneously covers the larger macrostructure features, which in turn cover the joint surface. The open-porous nano-oxide forming the interface itself appears to be fully infiltrated and wetted by the polymer. No voids or even channels were detected down to the respective resolution limits of scanning and transmission electron microscopy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.