Evaluations of existing land cover maps have revealed that high landscape heterogeneity and small patch sizes are a major reason for misclassification. These problems globally occur in biomes of mixed vegetation structure and are particularly relevant for African savannas. This paper presents a multi-resolution approach to derive fractional cover of vegetation growth forms at sub-pixel level, aiming at an improved mapping of land cover in the African grassland, savanna and shrubland biome. Fractional cover is delineated for woody growth forms (trees and shrubs), herbaceous growth forms, and bare surface. The approach incorporates very high resolution (QuickBird/IKONOS, 0.6-1 m), high resolution (Landsat TM/ETM+, 30 m), and medium resolution data (MODIS, 250 m). While QuickBird/IKONOS data are classified into discrete classes, at Landsat and MODIS resolutions, sub-pixel cover is delineated using non-parametric ensemble regression trees from the random forest family. The propagation of errors in the hierarchical multi-resolution approach is assessed with Monte Carlos simulations. The multi-resolution approach allows the adequate description of the heterogeneous vegetation structure in selected study regions of Southern Africa. The RMSE of the delineated fractional cover values range between 3.1% and 8.2% when compared with higher resolution data and between 4.4% and 9.9% when compared with field surveys. Errors at the Landsat resolution show minor influence on the accuracy of the MODIS results. Regarding the inter-resolution error propagation, for 90% of the Monte Carlo simulations, errors at the Landsat resolution resulted in RMSEs for MODIS increased by less than 4% (woody vegetation), 3.5% (herbaceous vegetation) and 2% (bare surface).
BackgroundStraw-coloured fruit bats (Eidolon helvum) migrate over vast distances across the African continent, probably following seasonal bursts of resource availability. This causes enormous fluctuations in population size, which in turn may influence the bats’ impact on local ecosystems. We studied the movement ecology of this central-place forager with state-of-the-art GPS/acceleration loggers and concurrently monitored the seasonal fluctuation of the colony in Accra, Ghana. Habitat use on the landscape scale was assessed with remote sensing data as well as ground-truthing of foraging areas.Principal FindingsDuring the wet season population low (~ 4000 individuals), bats foraged locally (3.5–36.7 km) in urban areas with low tree cover. Major food sources during this period were fruits of introduced trees. Foraging distances almost tripled (24.1–87.9 km) during the dry season population peak (~ 150,000 individuals), but this was not compensated for by reduced resting periods. Dry season foraging areas were random with regard to urban footprint and tree cover, and food consisted almost exclusively of nectar and pollen of native trees.Conclusions and SignificanceOur study suggests that straw-coloured fruit bats disperse seeds in the range of hundreds of meters up to dozens of kilometres, and pollinate trees for up to 88 km. Straw-coloured fruit bats forage over much larger distances compared to most other Old World fruit bats, thus providing vital ecosystem services across extensive landscapes. We recommend increased efforts aimed at maintaining E. helvum populations throughout Africa since their keystone role in various ecosystems is likely to increase due to the escalating loss of other seed dispersers as well as continued urbanization and habitat fragmentation.
Tree restoration is an effective way to store atmospheric carbon and mitigate climate change. However, large-scale tree-cover expansion has long been known to increase evaporation, leading to reduced local water availability and streamflow. More recent studies suggest that increased precipitation, through enhanced atmospheric moisture recycling, can offset this effect. Here we calculate how 900 million hectares of global tree restoration would impact evaporation and precipitation using an ensemble of data-driven Budyko models and the UTrack moisture recycling dataset. We show that the combined effects of directly enhanced evaporation and indirectly enhanced precipitation create complex patterns of shifting water availability. Large-scale tree-cover expansion can increase water availability by up to 6% in some regions, while decreasing it by up to 38% in others. There is a divergent impact on large river basins: some rivers could lose 6% of their streamflow due to enhanced evaporation, while for other rivers, the greater evaporation is counterbalanced by more moisture recycling. Several so-called hot spots for forest restoration could lose water, including regions that are already facing water scarcity today. Tree restoration significantly shifts terrestrial water fluxes, and we emphasize that future tree-restoration strategies should consider these hydrological effects.
Advancing land degradation in the irrigated areas of Central Asia hinders sustainable development of this predominantly agricultural region. To support decisions on mitigating cropland degradation, this study combines linear trend analysis and spatial logistic regression modeling to expose a land degradation trend in the Khorezm region, Uzbekistan, and to analyze the causes. Time series of the 250-m MODIS NDVI, summed over the growing seasons of 2000–2010, were used to derive areas with an apparent negative vegetation trend; this was interpreted as an indicator of land degradation. About one third (161,000 ha) of the region’s area experienced negative trends of different magnitude. The vegetation decline was particularly evident on the low-fertility lands bordering on the natural sandy desert, suggesting that these areas should be prioritized in mitigation planning. The results of logistic modeling indicate that the spatial pattern of the observed trend is mainly associated with the level of the groundwater table (odds = 330 %), land-use intensity (odds = 103 %), low soil quality (odds = 49 %), slope (odds = 29 %), and salinity of the groundwater (odds = 26 %). Areas, threatened by land degradation, were mapped by fitting the estimated model parameters to available data. The elaborated approach, combining remote-sensing and GIS, can form the basis for developing a common tool for monitoring land degradation trends in irrigated croplands of Central Asia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.