Abstract. We study the Wigner caustic on shell of a Lagrangian submanifold L of affine symplectic space. We present the physical motivation for studying singularities of the Wigner caustic on shell and present its mathematical definition in terms of a generating family. Because such a generating family is an odd deformation of an odd function, we study simple singularities in the category of odd functions and their odd versal deformations, applying these results to classify the singularities of the Wigner caustic on shell, interpreting these singularities in terms of the local geometry of L.
Communicated by E.M. Friedlander MSC: 35B32 37G40 a b s t r a c tIn this paper we present results for the systematic study of reversible-equivariant vector fields -namely, in the simultaneous presence of symmetries and reversing symmetries -by employing algebraic techniques from invariant theory for compact Lie groups. The Hilbert-Poincaré series and their associated Molien formulae are introduced, and we prove the character formulae for the computation of dimensions of spaces of homogeneous anti-invariant polynomial functions and reversible-equivariant polynomial mappings. A symbolic algorithm is obtained for the computation of generators for the module of reversible-equivariant polynomial mappings over the ring of invariant polynomials. We show that this computation can be obtained directly from a well-known situation, namely from the generators of the ring of invariants and the module of the equivariants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.