BackgroundDonor-specific antibodies are associated with increased risk of antibody-mediated rejection and decreased allograft survival. Therefore, reducing the risk of these antibodies remains a clinical need in transplantation. Plasma cells are a logical target of therapy given their critical role in antibody production.MethodsTo target plasma cells, we treated sensitized rhesus macaques with daratumumab (anti-CD38 mAb). Before transplant, we sensitized eight macaques with two sequential skin grafts from MHC-mismatched donors; four of them were also desensitized with daratumumab and plerixafor (anti-CXCR4). We also treated two patients with daratumumab in the context of transplant.ResultsThe animals treated with daratumumab had significantly reduced donor-specific antibody levels compared with untreated controls (57.9% versus 13% reduction; P<0.05) and prolonged renal graft survival (28.0 days versus 5.2 days; P<0.01). However, the reduction in donor-specific antibodies was not maintained because all recipients demonstrated rapid rebound of antibodies, with profound T cell–mediated rejection. In the two clinical patients, a combined heart and kidney transplant recipient with refractory antibody-mediated rejection and a highly sensitized heart transplant candidate, we also observed a significant decrease in class 1 and 2 donor-specific antibodies that led to clinical improvement of antibody-mediated rejection and to heart graft access.ConclusionsTargeting CD38 with daratumumab significantly reduced anti-HLA antibodies and anti-HLA donor-specific antibodies in a nonhuman primate model and in two transplant clinical cases before and after transplant. This supports investigation of daratumumab as a potential therapeutic strategy; however, further research is needed regarding its use for both antibody-mediated rejection and desensitization.
Previous evidence suggests that a homeostatic germinal center (GC) response may limit bortezomib desensitization therapy. We evaluated the combination of costimulation blockade with bortezomib in a sensitized non-human primate kidney transplant model. Sensitized animals were treated with bortezomib, belatacept, and anti-CD40 mAb twice weekly for a month (n = 6) and compared to control animals (n = 7). Desensitization therapy-mediated DSA reductions approached statistical significance (P = .07) and significantly diminished bone marrow PCs, lymph node follicular helper T cells, and memory B cell proliferation. Graft survival was prolonged in the desensitization group (P = .073). All control animals (n = 6) experienced graft loss due to antibody-mediated rejection (AMR) after kidney transplantation, compared to one desensitized animal (1/5). Overall, histological AMR scores were significantly lower in the treatment group (n = 5) compared to control (P = .020). However, CMV disease was common in the desensitized group (3/5). Desensitized animals were sacrificed after long-term follow-up with functioning grafts. Dual targeting of both plasma cells and upstream GC responses successfully prolongs graft survival in a sensitized NHP model despite significant infectious complications and drug toxicity. Further work is planned to dissect underlying mechanisms, and explore safety concerns.
SummaryABO blood group incompatible renal transplantation, using desensitization procedures, is an effective strategy. Efforts have been made to reduce desensitization: these are usually applied to all patients indiscriminately. The Guy's Hospital ABO blood group incompatible desensitization regimen uses a tiered approach, tailoring strategy according to initial antibody titres. Sixty-two ABO blood group incompatible living donor transplant recipients were compared with 167 recipients of blood group compatible living donor renal transplants. There were no statistically significant differences in allograft survival rates at 1 or 3 years posttransplant, rejection in the first year post-transplant or renal function in the first 3 years post-transplant. There was a higher rate of death in ABO blood group incompatible transplant recipients -this could be associated with differences in age and HLA mismatch between the two groups. Four ABO blood group incompatible patients experienced antibody-mediated rejection (no episode was associated with a rise in ABO blood group antibodies). Of the patients who received no desensitization, or rituximab alone, none has experienced antibody mediated rejection or experienced allograft loss. Tailoring the use of desensitization in ABO blood group incompatible renal transplantation according to initial ABO blood group antibody titres led to comparable results to blood group compatible transplantation.
The efficacy of bortezomib monotherapy in desensitizing kidney transplant candidates with preformed donor-specific antibodies remains unclear. We evaluated the effect of bortezomib on preformed antibodies and upstream components of the B cell response in a primate model sensitized by fully mismatched allogeneic skin transplants to provide mechanistic insights regarding the use of bortezomib as a means of desensitization. Bortezomib treatment given intravenously twice weekly for 1 month (1.3 mg/m per dose) clearly reduced the numbers of antibody-producing cells and CD38CD19CD20 plasma cells in the bone marrow (<0.05), but donor-specific alloantibody levels did not decrease. We observed a rapid but transient induction of circulating IgG B cells and an increased number of proliferating B cells in the lymph nodes after 1 month of treatment. Notably, bortezomib treatment induced germinal center B cell and follicular helper T cell expansion in the lymph nodes. These data suggest that bortezomib-induced plasma cell depletion triggers humoral compensation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.