Recently, the field of dual photocatalysis has grown rapidly, to become one of the most powerful tools for the functionalization of organic molecules under mild conditions. In particular, the merging of Earth‐abundant nickel‐based catalytic systems with visible‐light‐activated photoredox catalysts has allowed the development of a number of unique green synthetic approaches. This goes in the direction of ensuring an effective and sustainable chemical production, while safeguarding human health and environment. Importantly, this relatively new branch of catalysis has inspired an interdisciplinary stream of research that spans from inorganic and organic chemistry to materials science, thus establishing itself as one dominant trend in modern organic synthesis. This Review aims at illustrating the milestones on the timeline evolution of the photocatalytic systems used, with a critical analysis toward novel applications based on the use of photoactive two‐dimensional carbon‐based nanostructures. Lastly, forward‐looking opportunities within this intriguing research field are discussed.
In recent years, the field of dual photocatalysis has become an increasingly popular tool for the functionalization of organic substrates under mild operative conditions. Single-atom heterogeneous catalysts (SACs), where the metal atoms are stabilized by means of properly structured photoactive supports, are currently one of the frontiers of this research field. To this end, Carbon Nitrides (CNs) have emerged as ideal two-dimensional semiconducting supports, capable of stabilizing single metal sites (for instance: nickel, iron, among other) through nitrogenrich structures. This Concept highlights the recent advances in the synthesis of carbon nitride-based SACs and their applications in light-driven dual-catalytic processes, also providing forward-looking opportunities within this research area.
The manipulation of carbon nitride (CN) structures is one main avenue to enhance the activity of CN‐based photocatalysts. Increasing the efficiency of photocatalytic heterogeneous materials is a critical step toward the realistic implementation of sustainable schemes for organic synthesis. However, limited knowledge of the structure/activity relationship in relation to subtle structural variations prevents a fully rational design of new photocatalytic materials, limiting practical applications. Here, the CN structure is engineered by means of a microwave treatment, and the structure of the material is shaped around its suitable functionality for Ni dual photocatalysis, with a resulting boosting of the reaction efficiency toward many CX (X = N, S, O) couplings. The combination of advanced characterization techniques and first‐principle simulations reveals that this enhanced reactivity is due to the formation of carbon vacancies that evolve into triazole and imine N species able to suitably bind Ni complexes and harness highly efficient dual catalysis. The cost‐effective microwave treatment proposed here appears as a versatile and sustainable approach to the design of CN‐based photocatalysts for a wide range of industrially relevant organic synthetic reactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.