Mathematical models, in particular, physics-based models, are essential tools to food product and process design, optimization and control. The success of mathematical models relies on their predictive capabilities. However, describing physical, chemical and biological changes in food processing requires the values of some, typically unknown, parameters. Therefore, parameter estimation from experimental data is critical to achieving desired model predictive properties. This work takes a new look into the parameter estimation (or identification) problem in food process modeling. First, we examine common pitfalls such as lack of identifiability and multimodality. Second, we present the theoretical background of a parameter identification protocol intended to deal with those challenges. And, to finish, we illustrate the performance of the proposed protocol with an example related to the thermal processing of packaged foods.
Fish quality has a direct impact on market price and its accurate assessment and prediction are of main importance to set prices, increase competitiveness, resolve conflicts of interest and prevent food wastage due to conservative product shelf-life estimations. In this work we present a general methodology to derive predictive models of fish freshness under different storage conditions. The approach makes use of the theory of optimal experimental design, to maximize data information and in this way reduce the number of experiments. The resulting growth model for specific spoilage microorganisms in hake (Merluccius merluccius) is sufficiently informative to estimate quality sensory indexes under time-varying temperature profiles. In addition it incorporates quantitative information of the uncertainty induced by fish variability. The model has been employed to test the effect of factors such as fishing gear or evisceration, on fish spoilage and therefore fish quality. Results show no significant differences in terms of microbial growth between hake fished by long-line or bottom-set nets, within the implicit uncertainty of the model. Similar conclusions can be drawn for gutted and un-gutted hake along the experiment horizon. In addition, whenever there is the possibility to carry out the necessary experiments, this approach is sufficiently general to be used in other fish species and under different stress variables.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.