The in vitro antiproliferative activity of the title compound on five tumor cell lines shows preference for the colon-rectal tumor HCT116, IC(50) = 13.98 μM, followed by breast MCF7 (19.58 μM) and ovarian A2780 (23.38 μM) cell lines; human glioblastoma U-87 and lung carcinoma A549 are less sensitive. A commercial curcumin reagent, also containing demethoxy and bis-demethoxy curcumin, was used to synthesize the title compound, and so (p-cymene)Ru(demethoxy-curcuminato)chloro was also isolated and chemically characterized. The crystal structure of the title compound shows (1) the chlorine atom linking two neighboring complexes through H-bonds with two O(hydroxyl), forming an infinite two-step network; (2) significant twist in the curcuminato, 20° between the planes of the two phenyl rings. This was also seen in the docking of the Ru-complex onto a rich guanine B-DNA decamer, where a Ru-N7(guanine) interaction is detected. This Ru-N7(guanine) interaction is also seen with ESI-MS on a Ru-complex-guanosine derivative.
From the experimental crystal structure and ab initio calculations on resveratrol and its derivatives, structural features of mechanistic importance are described. The molecular structure reveals the relative coplanarity of the trans-stilbene skeleton, and the molecular packing in the solid state shows an extensive hydrogen bond network that elucidates the flip-flop motion of the three hydroxyl groups that alternately form and break H bonds with each of the neighboring phenolic oxygens. The dynamic behavior provoked by the alternation of hydrogen bond formation and breaking can result in the ready mobility of up to three hydrogen atoms per resveratrol molecule that can be transferred to reactive oxidants that are rich in electron density. In addition, theoretical studies confirm the planarity of resveratrol as well as for half of the molecule of a condensation dimeric derivative of resveratrol, trans-sigma-viniferin. Furthermore, these studies show the p-4'-OH group to be more acidic compared to the other two m-OH groups. These features correlate with the biological activity of resveratrol as an antioxidant and support earlier studies showing H-atom transfer to be the dominant mechanism by which phenolic antioxidants intercept free radicals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.