Insufficient primary stability of acetabular hip cups is a complication resulting in early cup loosening. Available cup designs vary in terms of wall thickness, potentially affecting implant fixation. This study investigated the influence of different wall thicknesses on the implantation process and the resulting primary stability using excised human acetabula. Implantations were performed using a powered impaction device providing consistent energy with each stroke. Two different wall thicknesses were compared in terms of seating progress, polar gap remaining after implantation, bone‐to‐implant contact area, cup deflection, and lever out moment. Thin‐walled cups showed higher lever out resistance (p < 0.001) and smaller polar gaps (p < 0.001) with larger bone contact toward the dome of the cup (p < 0.001) compared to thick‐walled cups. Small seating steps at the end of the impaction process were observed if a high number of strokes were needed to seat the cup (p = 0.045). A high number of strokes led to a strain release of the cup during the final strokes (p = 0.003). This strain release is indicative for over‐impaction of the cup associated with bone damage and reduced primary stability. Adequate cup seating can be achieved with thin‐walled cups with lower energy input in comparison to thicker ones. Thin‐walled cups showed improved primary stability and enable implantation with lower energy input, reducing the risk of over‐impaction and bone damage. Additional strokes should be avoided as soon as no further seating progress has been observed.
AimsThe aim of the study was to investigate whether the primary stability of press-fit acetabular components can be improved by altering the impaction procedure.MethodsThree impaction procedures were used to implant acetabular components into human cadaveric acetabula using a powered impaction device. An impaction frequency of 1 Hz until complete component seating served as reference. Overimpaction was simulated by adding ten strokes after complete component seating. High-frequency implantation was performed at 6 Hz. The lever-out moment of the acetabular components was used as measure for primary stability. Permanent bone deformation was assessed by comparison of double micro-CT (µCT) measurements before and after impaction. Acetabular component deformation and impaction forces were recorded, and the extent of bone-implant contact was determined from 3D laser scans.ResultsOverimpaction reduced primary acetabular component stability (p = 0.038) but did not significantly increase strain release after implantation (p = 0.117) or plastic deformations (p = 0.193). Higher press-fits were associated with larger polar gaps for the 1 Hz reference impaction (p = 0.002, R2 = 0.77), with a similar trend for overimpaction (p = 0.082, R2 = 0.31). High-frequency impaction did not significantly increase primary stability (p = 0.170) at lower impaction forces (p = 0.001); it was associated with smaller plastic deformations (p = 0.035, R2 = 0.34) and a trend for increased acetabular component relaxation between strokes (p = 0.112). Higher press-fit was not related to larger polar gaps for the 6 Hz impaction (p = 0.346).ConclusionOverimpaction of press-fit acetabular components should be prevented since additional strokes can be associated with increased bone damage and reduced primary stability as shown in this study. High-frequency impaction at 6 Hz was shown to be beneficial compared with 1 Hz impaction. This benefit has to be confirmed in clinical studies.Cite this article: Bone Joint J 2023;105-B(3):261–268.
We report a case of extended osteolysis, requiring a third revision of the left hip in an 85-year-old man 46 years after index operation. Major polyethylene (PE) wear occurred due to a missmatched combination of a bipolar Hastings head with a PE liner and head damage of the originally maintained stem. This case demonstrates that bipolar heads should not be used with PE cup liners since the respective bearing diameters cannot be guaranteed to match due to missing specifications. Furthermore, putting a Hastings head on an already damaged head of the stem should be omitted and rather the stem should initially be revised.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.