Many common kinetic model reduction approaches are explicitly based on inherent multiple time scales and often assume and directly exploit a clear time scale separation into fast and slow reaction processes. They approximate the system dynamics with a dimension-reduced model after eliminating the fast modes by enslaving them to the slow ones. The corresponding restrictive assumption of full relaxation of fast modes often renders the resulting approximation of slow attracting manifolds inaccurate as a representation of the reduced model and makes the numerical solution of the nonlinear "reduction equations" particularly difficult in many cases where the gap in intrinsic time scales is not large enough. We demonstrate that trajectory optimization approaches can avoid such severe restrictions by computing numerical solutions that correspond to "maximally relaxed" dynamical modes in a suitable sense. We present a framework of trajectory-based optimization for model reduction in chemical kinetics and a general class of reduction criteria characterizing the relaxation of chemical forces along reaction trajectories. These criteria can be motivated geometrically exploiting ideas from differential geometry and fundamental physics and turn out to be highly successful in example applications. Within this framework, we provide results for the computational approximation of slow attracting low-dimensional manifolds in terms of families of optimal trajectories for a six-component hydrogen combustion mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.