In orthopaedic oncology, limb salvage procedures are becoming more frequent thanks to recent major improvements in medical imaging, biomechanical modelling and additive manufacturing. For the pelvis, surgical reconstruction with metal implants after tumor resection remains challenging, because of the complex anatomical structures involved. The aim of the present work is to define a consistent overall procedure to guide surgeons and bioengineers for proper implant design. All relevant steps from medical imaging to an accurate 3D anatomical-based model are here reported. In detail, the anatomical 3D models include bone shapes from CT on the entire pelvic bone, i.e., including both affected and unaffected sides, and position and extension of the tumor and soft tissues from MRI on the affected side. These models are then registered in space, and an initial shape of the personalized implant for the affected side can be properly designed and dimensioned based on the information from the unaffected side. This reported procedure can be fundamental also for virtual pre-surgical planning, and the design of patient-specific cutting guides, which would result is a safe margin for tumor cut. The entire procedure is here shown by describing the results in a single real case.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.