Bacillus subtilis is an endospore-forming bacterium. There are indications that protein disulfide linkages occur in spores, but the role of thiol-disulfide chemistry in spore synthesis is not understood. Thiol-disulfide oxidoreductases catalyze formation or breakage of disulfide bonds in proteins. CcdA is the only B. subtilis thiol-disulfide oxidoreductase that has previously been shown to play some role in endospore biogenesis. In this work we show that lack of the StoA (YkvV) protein results in spores sensitive to heat, lysozyme, and chloroform. Compared to CcdA deficiency, StoA deficiency results in a 100-fold-stronger negative effect on sporulation efficiency. StoA is a membrane-bound protein with a predicted thioredoxin-like domain probably localized in the intermembrane space of the forespore. Electron microscopy of spores of CcdA-and StoA-deficient strains showed that the spore cortex is absent in both cases. The BdbD protein catalyzes formation of disulfide bonds in proteins on the outer side of the cytoplasmic membrane but is not required for sporulation. Inactivation of bdbD was found to suppress the sporulation defect of a strain deficient in StoA. Our results indicate that StoA is a thiol-disulfide oxidoreductase that is involved in breaking disulfide bonds in cortex components or in proteins important for cortex synthesis.
Bacillus subtilisStoA is an extracytoplasmic thiol-disulfide oxidoreductase (TDOR) important for the synthesis of the endospore peptidoglycan cortex protective layer. Here we demonstrate that StoA is membrane-associated in B. subtilis and report the crystal structure of the soluble protein lacking its membrane anchor. This showed that StoA adopts a thioredoxinlike fold with N-terminal and internal additions that are characteristic of extracytoplasmic TDORs. The CXXC active site of the crystallized protein was found to be in a mixture of oxidized and reduced states, illustrating that there is little conformational variation between redox states. The midpoint reduction potential was determined as ؊248 mV versus normal hydrogen electrode at pH 7 consistent with StoA fulfilling a reductive role in endospore biogenesis. pK a values of the active site cysteines, Cys-65 and Cys-68, were determined to be 5.5 and 7.8. Although Cys-68 is buried within the structure, both cysteines were found to be accessible to cysteine-specific alkylating reagents. In vivo studies of site-directed variants of StoA revealed that the active site cysteines are functionally important, as is Glu-71, which lies close to the active site and is conserved in many reducing extracytoplasmic TDORs. The structure and biophysical properties of StoA are very similar to those of ResA, a B. subtilis extracytoplasmic TDOR involved in cytochrome c maturation, raising important general questions about how these similar but nonredundant proteins achieve specificity. A detailed comparison of the two proteins demonstrates that relatively subtle differences, largely located around the active sites of the proteins, are sufficient to confer specificity.
SummaryThe bacterial endospore is a dormant and heatresistant form of life. StoA (SpoIVH) in Bacillus subtilis is a membrane-bound thioredoxin-like protein involved in endospore cortex synthesis. It is proposed to reduce disulphide bonds in hitherto unknown proteins in the intermembrane compartment of developing forespores. Starting with a bioinformatic analysis combined with mutant studies we identified the sporulation-specific, high-molecularweight, class B penicillin-binding protein SpoVD as a putative target for StoA. We then demonstrate that SpoVD is a membrane-bound protein with two exposed redox-active cysteine residues. Structural modelling of SpoVD, based on the well characterized orthologue PBP2x of Streptococcus pneumoniae, confirmed that a disulphide bond can form close to the active site of the penicillin-binding domain restricting access of enzyme substrate or functional association with other cortex biogenic proteins. Finally, by exploiting combinations of mutations in the spoVD, stoA and ccdA genes in B. subtilis cells, we present strong in vivo evidence that supports the conclusion that StoA functions to specifically break the disulphide bond in the SpoVD protein in the forespore envelope. The findings contribute to our understanding of endospore biogenesis and open a new angle to regulation of cell wall synthesis and penicillin-binding protein activity.
Thiol-disulfide oxidoreductases catalyze formation, disruption, or isomerization of disulfide bonds between cysteine residues in proteins. Much is known about the functional roles and properties of this class of redox enzymes in vegetative bacterial cells but their involvement in sporulation has remained unknown until recently. Two membrane-embedded thiol-disulfide oxidoreductases, CcdA and StoA/SpoIVH, conditionally required for efficient production of Bacillus subtilis heat-resistant endospores, have now been identified. Properties of mutant cells lacking the two enzymes indicate new aspects in the molecular details of endospore envelope development. This mini-review presents an overview of membrane-bound thiol-disulfide oxidoreductases in the Gram-positive bacterium B. subtilis and endospore synthesis. Accumulated experimental findings on CcdA and StoA/SpoIVH are reviewed. A model for the role of these proteins in endospore cortex biogenesis in presented.
BdbD is a thiol:disulfide oxidoreductase (TDOR) from Bacillus subtilis that functions to introduce disulfide bonds in substrate proteins/peptides on the outside of the cytoplasmic membrane and, as such, plays a key role in disulfide bond management. Here we demonstrate that the protein is membrane-associated in B. subtilis and present the crystal structure of the soluble part of the protein lacking its membrane anchor. This reveals that BdbD is similar in structure to Escherichia coli DsbA, with a thioredoxin-like domain with an inserted helical domain. A major difference, however, is the presence in BdbD of a metal site, fully occupied by Ca2+, at an inter-domain position some 14 Å away from the CXXC active site. The midpoint reduction potential of soluble BdbD was determined as −75 mV versus normal hydrogen electrode, and the active site N-terminal cysteine thiol was shown to have a low pKa, consistent with BdbD being an oxidizing TDOR. Equilibrium unfolding studies revealed that the oxidizing power of the protein is based on the instability introduced by the disulfide bond in the oxidized form. The crystal structure of Ca2+-depleted BdbD showed that the protein remained folded, with only minor conformational changes. However, the reduced form of Ca2+-depleted BdbD was significantly less stable than reduced Ca2+-containing protein, and the midpoint reduction potential was shifted by approximately −20 mV, suggesting that Ca2+ functions to boost the oxidizing power of the protein. Finally, we demonstrate that electron exchange does not occur between BdbD and B. subtilis ResA, a low potential extra-cytoplasmic TDOR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.