Abstract:The water-energy-food nexus is a topical subject for research and practice, reflecting the importance of these sectors for humankind and the complexity and magnitude of the challenges they are facing. While the nexus as a concept is not yet mature or fully tested in practice, it has already encouraged a range of approaches in a variety of contexts. This article provides a set of definitions recognizing three perspectives that see the nexus as an analytical tool, governance framework and as an emerging discourse. It discusses the implications that an international transboundary context brings to the nexus and vice versa. Based on a comparative analysis of three Asian regions-Central Asia, South Asia and the Mekong Region-and their related transboundary river basins, we propose that the transboundary context has three major implications: diversity of scales and perspectives, importance of state actors and importance of politics. Similarly, introducing the nexus as an approach in a transboundary context has a potential to provide new resources and approaches, alter existing actor dynamics and portray a richer picture of relationships. Overall, the significance of water-energy-food linkages and their direct impacts on water allocation mean that the nexus has the potential to complement existing approaches also in the transboundary river basins.
Myanmar's water-related sectors are subject to intensive changes, as the country's abundant land and water resources provide substantial scope for development. Recent steps towards economic reform in Myanmar have led to a surge of foreign investment directed towards intensified natural resource extraction. Both the agricultural and the energy sector are increasingly affected by foreign investments that will impact the status of water, energy and food security in the country. With these on-going developments, Myanmar's future is largely dependent on how its natural resources are managed and how the benefits from the resource extraction are shared. With various institutional changes and new actors welcomed to the sectors, existing livelihoods and ecosystems dependent on the land and water resources are to face increasing competition for the shared resources, while lacking secured access to them. There are increasing concerns that this sectoral development is occurring at the expense of environmental and social sustainability. As one way to tackle these challenges, the water-energyfood nexus approach could help in finding synergies and co-benefits across sectors by addressing the imbalances along the nexus and externalities derived from the on-going intensification.
An overview is presented of the contemporary societal and environmental development situation in the six major transboundary river basins that drain south from China: the Red River, Mekong, Salween, Irrawaddy, Ganges-Brahmaputra-Meghna and Indus. The overall societal and environmental vulnerability of the basins is assessed using multidimensional river basin vulnerability analysis. The analysis shows that while China has a fairly low level of vulnerability in these basins, its downstream influence is substantial. This setting offers a plethora of opportunities for transboundary cooperation and calls for a high level of responsibility from the upstream riparian countries.
Climate variability has major impacts on crop yields and food production in South Asia. The spatial differences of the impact are not, however, well understood. In this study, we thus aim to analyse the spatio-temporal relationship between precipitation and rice yields in the Ganges-Brahmaputra-Meghna region. The effects of rainfall variation on yields were analysed with regression models using the Standardized Precipitation Index (SPI) as an explanatory variable. Our results indicate that in large part of the study region, a strong relationship between precipitation and rice yields exists and the SPI at various lags chosen as the predictor variable performed well in describing the inter-annual yield variability. However, the study demonstrated large spatial variations in the strength of this relationship or optionally in the suitability of the chosen methodology for investigating it. In the mid-plains of the Ganges, which represent very important agricultural areas, precipitation variability has a strong impact on rice yields, while in downstream Ganges as well as in Brahmaputra, where precipitation is more abundant, the relationship was less pronounced. Where the performance of the regression models was weaker, it is likely that yield variation depended on other factors such as management practices or on other climate factors such as temperature. The results further showed that the SPI at 1, 3, 6 and 12 month lags calculated for the monsoon time (June-October) are most commonly the best at explaining the rice yield variability. The SPI can thus be considered a very useful predictor of rice yield variability in some parts of the study region, demonstrating that they could be used for agricultural applications and policy decisions to improve the region's food security.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.