Because of the rising incidence of failures in the treatment of oropharyngeal candidosis in the case of severely immunosuppressed patients (mostly human immunodeficiency virus [HIV]-infected patients), there is need for the development of new, more effective agents and/or compounds that support the activity of the common antifungal agents. Since lactoferrin is one of the nonspecific host defense factors present in saliva that exhibit antifungal activity, we studied the antifungal effects of human, bovine, and iron-depleted lactoferrin in combination with fluconazole, amphotericin B, and 5-fluorocytosine in vitro against clinical isolates ofCandida species. Distinct antifungal activities of lactoferrin were observed against clinical isolates ofCandida. The MICs generally were determined to be in the range of 0.5 to 100 mg · ml−1. Interestingly, in the combination experiments we observed pronounced cooperative activity against the growth of Candida by using lactoferrin and the three antifungals tested. Only in a limited concentration range was minor antagonism detected. The use of lactoferrin and fluconazole appeared to be the most successful combination. Significant reductions in the minimal effective concentrations of fluconazole were found when it was combined with a relatively low lactoferrin concentration (1 mg/ml). Such combinations still resulted in complete growth inhibition, while synergy of up to 50% against several Candida species was observed. It is concluded that the combined use of lactoferrin and antifungals against severe infections with Candida is an attractive therapeutic option. Since fluconazole-resistantCandida species have frequently been reported, especially in HIV-infected patients, the addition of lactoferrin to the existing fluconazole therapy could postpone the occurrence of species resistance against fluconazole. Clinical studies to further elucidate the potential utility of this combination therapy have been initiated.
Background This open-label, phase 1 trial (NCT02316197) aimed to determine the maximum-tolerated dose (MTD) and/or recommended phase 2 dose (RP2D) of peposertib (formerly M3814), a DNA-dependent protein kinase (DNA-PK) inhibitor in patients with advanced solid tumours. Secondary/exploratory objectives included safety/tolerability, pharmacokinetic/pharmacodynamic profiles and clinical activity. Methods Adult patients with advanced solid tumours received peposertib 100–200 mg once daily or 150–400 mg twice daily (BID) in 21-day cycles. Results Thirty-one patients were included (median age 66 years, 61% male). One dose-limiting toxicity, consisting of mainly gastrointestinal, non-serious adverse events (AEs) and long recovery duration, was reported at 300 mg BID. The most common peposertib-related AEs were nausea, vomiting, fatigue and pyrexia. The most common peposertib-related Grade 3 AEs were maculopapular rash and nausea. Peposertib was quickly absorbed systemically (median Tmax 1.1–2.5 h). The p-DNA-PK/t-DNA-PK ratio decreased consistently in peripheral blood mononuclear cells 3–6 h after doses ≥100 mg. The best overall response was stable disease (12 patients), lasting for ≥12 weeks in seven patients. Conclusions Peposertib was well-tolerated and demonstrated modest efficacy in unselected tumours. The MTD was not reached; the RP2D was declared as 400 mg BID. Further studies, mainly with peposertib/chemo-radiation, are ongoing. Clinical trial registration NCT02316197
A novel class of polyanionic proteins with potent anti-human immunodeficiency virus type 1 activity, the negatively charged albumins (NCAs), have been reported previously. In vitro antiviral assays established that these compounds preferentially inhibit virus-cell fusion and syncytium formation and that virus-cell binding is less affected. Here the interaction of the NCAs with synthetic peptides composed of 15-36 amino acids and corresponding to different parts of the gp120 envelope protein is described. Among the gp120 peptides tested, binding of the NCAs was observed only with the s0-called V3 loop (amino acids 296-330) and the C-terminal part of gp120. A higher number of negatively charged residues in the albumins resulted in higher binding affinities. NCAs in which, in addition to negative charges, up to 7 or 14 lactose or mannose groups were introduced, respectively did not exhibit increasing binding affinity. In contrast, mannosylated albumin containing about 14 mannose groups showed an increased binding compared with native albumin. Binding of the NCAs to the V3 and C-terminal oligopeptide was competitively inhibited by sulfated polysaccharide heparin and dextran sulfate. This finding indicates that the binding between the gp120 peptides and the NCAs is likely caused by electrostatic interactions. However, the fact that the dissociation constants of dextran sulfate and heparin are orders of magnitude larger compared with the NCAs indicates that the spatial structure of the proteins and/or hydrophobic interactions between the NCAs and the envelope protein may also be involved.
Previous studies have shown that acylated plasma and milk proteins with increased negative charge, derived from various animal and human sources, are potent anti-HIV compounds. The antiviral effects seemed to correlate positively with the number of negative charges introduced into the various polypeptides: proteins with a high content of basic amino acids in which all of the available epsilonNH2 groups were anionized yielded the most potent anti-HIV compounds. It remained unclear however whether the total net negative charge of the various derivatized proteins, or rather the charge density on the protein backbone, is essential for the observed anti-HIV activity. Earlier studies have shown that acylated albumins preferentially block the process of HIV/cell fusion through binding to the HIV envelope proteins gp120 and gp41 as well as to the cell surface of the HIV target cells. Some of these polyanionic proteins have been shown to interfere also with the gp120-CD4 mediated virus/cell binding. The relative contribution of these effects to the anti-HIV activity may depend both on the total negative charge introduced as well as the hydrophobicity of the acylating reagent added to the particular proteins. In this study we show that the higher the charge density of the derivatized proteins, the more potent their HIV replication inhibiting effects are. In contrast, the addition of positive charge to the studied plasma and milk proteins through amination resulted in a reduced anti-HIV activity but a clearly increased anti-HCMV activity, with IC50 values in the low micromolar concentration range. Interestingly, native lactoferrin (Lf) was antivirally active against both HIV and HCMV. Acylation or amination of Lf increased the anti-HIV and anti-HCMV activity, respectively. The N-terminal portion of Lf appeared essential for its anti-HCMV effect: N-terminal deletion variants of human Lf were less active against HCMV. Circular dichroism of the modified proteins showed that the secondary structure of the tested proteins was only moderately influenced by acylation and/or covalent attachment of drugs, making these (derivatized) proteins useful candidates as antiviral agents and/or intrinsically active drug carriers. The relatively simple chemical derivatization as well as the abundant sources of blood plasma and milk proteins provides attractive opportunities for the preparation of potent and relatively cheap antiviral agents for systemic or local applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.