BackgroundSodium bicarbonate (NaHCO3) is an alkalizing agent and its ingestion is used to improve anaerobic performance. However, the influence of alkalizing nutrients on anaerobic exercise performance remains unclear. Therefore, the present study investigated the influence of an alkalizing versus acidizing diet on 400-m sprint performance, blood lactate, blood gas parameters, and urinary pH in moderately trained adults.MethodsIn a randomized crossover design, eleven recreationally active participants (8 men, 3 women) aged 26.0 ± 1.7 years performed one trial under each individual’s unmodified diet and subsequently two trials following either 4 days of an alkalizing (BASE) or acidizing (ACID) diet. Trials consisted of 400-m runs at intervals of 1 week on a tartan track in a randomized order.ResultsWe found a significantly lower 400-m performance time for the BASE trial (65.8 ± 7.2 s) compared with the ACID trial (67.3 ± 7.1 s; p = 0.026). In addition, responses were significantly higher following the BASE diet for blood lactate (BASE: 16.3 ± 2.7; ACID: 14.4 ± 2.1 mmol/L; p = 0.32) and urinary pH (BASE: 7.0 ± 0.7; ACID: 5.5 ± 0.7; p = 0.001).ConclusionsWe conclude that a short-term alkalizing diet may improve 400-m performance time in moderately trained participants. Additionally, we found higher blood lactate concentrations under the alkalizing diet, suggesting an enhanced blood or muscle buffer capacity. Thus, an alkalizing diet may be an easy and natural way to enhance 400-m sprint performance for athletes without the necessity of taking artificial dietary supplements.
IntroductionExposure to hypoxic conditions is reported to impair cognitive performance. Further, moderate physical exercise improves cognitive function, but little is known about the influence of exercise on cognitive function in hypoxia. Therefore, the current study aimed to examine the influence of hypoxia (HYP) and prolonged exercise (EX) on attentional performance.MethodsA total of 80 participants (female: n = 29; male: n = 51) were assigned to four groups: HYP + EX (n = 15), HYP (n = 25), EX (n = 21) and normoxia (NOR) (n = 21). The Frankfurt Attention Inventory—2 (FAIR-2) was performed at four testing points (day 1, 14, 16 and 18) to assess attentional performance. All groups completed a pretest (D1) and a follow-up test (D18). In HYP + EX conditions, the cognitive task was performed in a hypoxic state after prolonged exercise (D14: 3950 m, D16: 5739 m) during a mountain climb on Mt. Kilimanjaro. Participants in HYP were tested under intermittent hypoxia at rest in a hypoxic chamber (D14: 3500 m, D16: 5800 m), and those in EX were tested under normoxia after prolonged exercise during a 7-day backcountry ski hiking tour. NOR was a control group, and participants completed all tests under normoxia and at rest.ResultsHypoxia impaired the attentional functions performance value (PV) and continuity value (CV) for the HYP + EX (p = 0.000) and HYP (L: p = 0.025; K: p = 0.043) groups at 5739 m and 5800 m, respectively, but not the function quality value (QV). In contrast, the EX group did not exhibit changes in attentional function.ConclusionThe current results suggest that attentional performance is impaired during extreme normobaric and hypobaric hypoxic exposure. We further conclude that greater cognitive impairment under hypobaric hypoxia during a mountain climb compared with normobaric hypoxia at rest is not caused by prolonged exercise, but may be influenced by other factors (e.g. low temperatures, dehydration, or sleep deprivation) that remain to be verified.
Kinesio taping (KT) is a commonly used intervention in sports and, recently, KT has become popular among athletes competing in sport climbing and bouldering events. However, evidence on the effect of KT on grip strength and endurance is still controversial. Therefore, the purpose of this study was to evaluate immediate effects of KT on muscular strength and endurance of the finger flexor muscles in sport climbers. Twenty recreationally-trained active sport climbers (10 men, 10 women) aged 28.5 ± 10.6 years performed one familiarisation trial and subsequently, in a randomised crossover design, two test trials either with (TAPE) or without (CONTROL) KT over the finger flexor muscles. Test trials consisted of three performance measurements (hand grip strength and endurance, finger hang, and lap climbing) at intervals of 48 h in a randomised order. We observed no significant differences in the parameters of hand grip peak force, fatigue index, finger hang time, lap climbing distance and time, or maximum blood lactate values after lap climbing between the TAPE and CONTROL trials (p > 0.05). The participants' climbing ability was significantly correlated with the intra-individual performance changes between the TAPE and CONTROL conditions for the fatigue index (r = −0.598, p = 0.005), but not in any of the other performance-related parameters. Therefore, KT over the finger flexor muscles neither enhanced hand grip strength and endurance nor the sport climbing performance parameters of finger hang, lap climbing distance and time, and maximum blood lactate values after lap climbing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.