The FAIR principles have been widely cited, endorsed and adopted by a broad range of stakeholders since their publication in 2016. By intention, the 15 FAIR guiding principles do not dictate specific technological implementations, but provide guidance for improving Findability, Accessibility, Interoperability and Reusability of digital resources. This has likely contributed to the broad adoption of the FAIR principles, because individual stakeholder communities can implement their own FAIR solutions. However, it has also resulted in inconsistent interpretations that carry the risk of leading to incompatible implementations. Thus, while the FAIR principles are formulated on a high level and may be interpreted and implemented in different ways, for true interoperability we need to support convergence in implementation choices that are widely accessible and (re)-usable. We introduce the concept of FAIR implementation considerations to assist accelerated global participation and convergence towards accessible, robust, widespread and consistent FAIR implementations. Any self-identified stakeholder community may either choose to reuse solutions from existing implementations, or when they spot a gap, accept the challenge to create the needed solution, which, ideally, can be used again by other communities in the future. Here, we provide interpretations and implementation considerations (choices and challenges) for each FAIR principle.
This article explores the global implementation of the FAIR Guiding Principles for scientific management and data stewardship, which provide that data should be findable, accessible, interoperable and reusable. The implementation of these principles is designed to lead to the stewardship of data as FAIR digital objects and the establishment of the Internet of FAIR Data and Services (IFDS). If implementation reaches a tipping point, IFDS has the potential to revolutionize how data is managed by making machine and human readable data discoverable for reuse. Accordingly, this article examines the expansion of the implementation of FAIR Guiding Principles, especially how and in which geographies (locations) and areas (topic domains) implementation is taking place. A literature review of academic articles published between 2016 and 2019 on the use of FAIR Guiding Principles is presented. The investigation also includes an analysis of the domains in the IFDS Implementation Networks (INs). Its uptake has been mainly in the Western hemisphere. The investigation found that implementation of FAIR Guiding Principles has taken firm hold in the domain of bio and natural sciences. To achieve a tipping point for FAIR implementation, it is now time to ensure the inclusion of non-European ascendants and of other scientific domains. Apart from equal opportunity and genuine global partnership issues, a permanent European bias poses challenges with regard to the representativeness and validity of data and could limit the potential of IFDS to reach across continental boundaries. The article concludes that, despite efforts to be inclusive, acceptance of the FAIR Guiding Principles and IFDS in different scientific communities is limited and there is a need to act now to prevent dampening of the momentum in the development and implementation of the IFDS. It is further concluded that policy entrepreneurs and the GO FAIR INs may contribute to making the FAIR Guiding Principles more flexible in including different research epistemologies, especially through its GO CHANGE pillar.
The limited volume of COVID‐19 data from Africa raises concerns for global genome research, which requires a diversity of genotypes for accurate disease prediction, including on the provenance of the new SARS‐CoV‐2 mutations. The Virus Outbreak Data Network (VODAN)‐Africa studied the possibility of increasing the production of clinical data, finding concerns about data ownership, and the limited use of health data for quality treatment at point of care. To address this, VODAN Africa developed an architecture to record clinical health data and research data collected on the incidence of COVID‐19, producing these as human‐ and machine‐readable data objects in a distributed architecture of locally governed, linked, human‐ and machine‐readable data. This architecture supports analytics at the point of care and—through data visiting, across facilities—for generic analytics. An algorithm was run across FAIR Data Points to visit the distributed data and produce aggregate findings. The FAIR data architecture is deployed in Uganda, Ethiopia, Liberia, Nigeria, Kenya, Somalia, Tanzania, Zimbabwe, and Tunisia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.