Graphical abstract
In isolates of
Trichomonas vaginalis
with reduced susceptibility metronidazole, flavin reductase and alcohol dehydrogenase-1 (ADH1) activities are down-regulated.
Highlights
► In clinical isolates of
Trichomonas vaginalis
with reduced metronidazole susceptibility flavin reductase is down-regulated. ► In clinical isolates of
T
.
vaginalis
with reduced metronidazole susceptibility alcohol dehydrogenase-1 (ADH1) is down-regulated. ► Thioredoxin reductase levels are not changed in metronidazole-resistant
T
.
vaginalis
clinical isolates.
Clinical and immunologic responses to a B-cell epitope vaccine in HER2/neuoverexpressing advanced gastric cancer patients -results from Phase 1b trial IMU.ACS.
Immunotherapy has been a milestone in combatting cancer, by complementing or even replacing classic treatments like surgery, chemotherapy, radiation, and anti-hormonal therapy. In 15%-30% of breast cancers, overexpression of the human epidermal growth factor receptor 2 (Her-2/neu) is associated with more aggressive tumor development.Passive immunization/immunotherapy with the recombinantly produced Her-2/neu-targeting monoclonal antibodies (mAbs) pertuzumab and trastuzumab has been shown to effectively treat breast cancer and lead to a significantly better prognosis. However, allergic and hypersensitivity reactions, cardiotoxicity, development of resistance, lack of immunological memory which results in continuous application over a long period, and cost-intensiveness are among the drawbacks associated with this treatment. Furthermore, intrinsic or acquired resistance is associated with the application of therapeutic mAbs, leading to the disease recurrence. Conversely, these drawbacks could be potentially overcome by vaccination, i.e. an active immunization/immunotherapy approach by activating the patient's own immune system to target cancer, along with inducing immunological memory. This review aims to summarize the main approaches investigated and undertaken for the production of Her-2/neu vaccine candidates, with the main focus on peptide-based vaccines and their evaluation in clinical settings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.