Objectives To provide direct estimates of risk of cancer after protracted low doses of ionising radiation and to strengthen the scientific basis of radiation protection standards for environmental, occupational, and medical diagnostic exposures. Design Multinational retrospective cohort study of cancer mortality. Setting Cohorts of workers in the nuclear industry in 15 countries. Participants 407 391 workers individually monitored for external radiation with a total follow-up of 5.2 million person years. Main outcome measurements Estimates of excess relative risks per sievert (Sv) of radiation dose for mortality from cancers other than leukaemia and from leukaemia excluding chronic lymphocytic leukaemia, the main causes of death considered by radiation protection authorities. Results The excess relative risk for cancers other than leukaemia was 0.97 per Sv, 95% confidence interval 0.14 to 1.97. Analyses of causes of death related or unrelated to smoking indicate that, although confounding by smoking may be present, it is unlikely to explain all of this increased risk. The excess relative risk for leukaemia excluding chronic lymphocytic leukaemia was 1.93 per Sv ( < 0 to 8.47). On the basis of these estimates, 1-2% of deaths from cancer among workers in this cohort may be attributable to radiation. Conclusions These estimates, from the largest study of nuclear workers ever conducted, are higher than, but statistically compatible with, the risk estimates used for current radiation protection standards. The results suggest that there is a small excess risk of cancer, even at the low doses and dose rates typically received by nuclear workers in this study.
To provide direct estimates of cancer risk after low-dose protracted exposure to ionizing radiation, a large-scale epidemiological study of nuclear industry workers was conducted in 15 countries. As part of this study, identification and quantification of errors in historical recorded doses was conducted based on a review of dosimetric practices and technologies in participating facilities. The main sources of errors on doses from "high-energy" photons (100-3000 keV) were identified as the response of dosimeters in workplace exposure conditions and historical calibration practices. Errors related to dosimetry technology and radiation fields were quantified to derive period- and facility-specific estimates of bias and uncertainties in recorded doses. This was based on (1) an evaluation of predominant workplace radiation from measurement studies and dosimetry expert assessment and (2) an estimation of the energy and geometry response of dosimeters used historically in study facilities. Coefficients were derived to convert recorded doses to H(p) (10) and organ dose, taking into account different aspects of the calibration procedures. A parametric, lognormal error structure model was developed to describe errors in doses as a function of facility and time period. Doses from other radiation types, particularly neutrons and radionuclide intake, could not be adequately reconstructed in the framework of the 15-Country Study. Workers with substantial doses from these radiation types were therefore identified and excluded from analyses. Doses from "lower-energy" photons (<100 keV) and from "higher-energy" photons (>3 MeV) were estimated to be small.
The Chernobyl accident, which occurred April 26, 1986, resulted in a large release of radionuclides, which were deposited over a very wide area, particularly in Europe. Although an increased risk of thyroid cancer in exposed children has been clearly demonstrated in the most contaminated regions, the impact of the accident on the risk of other cancers as well as elsewhere in Europe is less clear. The objective of the present study was to evaluate the human cancer burden in Europe as a whole from radioactive fallout from the accident. Average country-and region-specific whole-body and thyroid doses from Chernobyl were estimated using new dosimetric models and radiological data. Numbers of cancer cases and deaths possibly attributable to radiation from Chernobyl were estimated, applying state-ofthe-art risk models derived from studies of other irradiated populations. Simultaneously, trends in cancer incidence and mortality were examined over time and by dose level. The risk projections suggest that by now Chernobyl may have caused about 1,000 cases of thyroid cancer and 4,000 cases of other cancers in Europe, representing about 0.01% of all incident cancers since the accident. Models predict that by 2065 about 16,000 (95% UI 3,400-72,000) cases of thyroid cancer and 25,000 (95% UI 11,000-59,000) cases of other cancers may be expected due to radiation from the accident, whereas several hundred million cancer cases are expected from other causes. Although these estimates are subject to considerable uncertainty, they provide an indication of the order of magnitude of the possible impact of the Chernobyl accident. It is unlikely that the cancer burden from the largest radiological accident to date could be detected by monitoring national cancer statistics. Indeed, results of analyses of time trends in cancer incidence and mortality in Europe do not, at present, indicate any increase in cancer rates-other than of thyroid cancer in the most contaminated regions-that can be clearly attributed to radiation from the Chernobyl accident. ' 2006 Wiley-Liss, Inc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.