Mice fed a high-fat diet for 12 weeks or longer develop hyperglycemia, insulin resistance, dyslipidemia, and fatty liver. Additionally, a high-fat diet induces inflammation that remodels and affects the anti-inflammatory and antiatherogenic property of the high-density lipoprotein (HDL). However, the precise time course of metabolic disease progression and HDL remodeling remains unclear. Short-term (four weeks) high-fat feeding (60% fat calories) was performed in wild-type male C57BL/6J mice to gain insights into the early metabolic disease processes in conjunction with a HDL proteome dynamics analysis using a heavy water metabolic labeling approach. The high-fat diet-fed mice developed hyperglycemia, impaired glucose tolerance, hypercholesterolemia without hypertriglyceridemia or hepatic steatosis. A plasma HDL proteome dynamics analysis revealed increased turnover rates (and reduced half-lives) of several acute-phase response proteins involved in innate immunity, including complement C3 (12.77 ± 0.81 vs. 9.98 ± 1.20 h, p < 0.005), complement factor B (12.71 ± 1.01 vs. 10.85 ± 1.04 h, p < 0.05), complement Factor H (19.60 ± 1.84 vs. 16.80 ± 1.58 h, p < 0.05), and complement factor I (25.25 ± 1.29 vs. 19.88 ± 1.50 h, p < 0.005). Our findings suggest that an early immune response-induced inflammatory remodeling of the plasma HDL proteome precedes the diet-induced steatosis and dyslipidemia.
Several aspects of diabetes pathophysiology and complications result from hyperglycemia-induced alterations in the structure and function of plasma proteins. Furthermore, insulin has a significant influence on protein metabolism by affecting both the synthesis and degradation of proteins in various tissues. To understand the role of progressive hyperglycemia on plasma proteins, in this study, we measured the turnover rates of high-density lipoprotein (HDL)-associated proteins in control (chow diet), prediabetic (a high-fat diet [HFD] for eight weeks) or diabetic (HFD for eight weeks with low-dose streptozotocin [HFD+STZ] in weeks 5-8 of HFD) C57BL/6J mice using heavy water (2H2O)-based metabolic labeling approach. Compared to control mice, HFD and HFD+STZ mice showed elevations of fasting plasma glucose levels in the prediabetic and diabetic range, respectively. Furthermore, the HFD and HFD+STZ mice showed increased hepatic triglyceride (TG) levels, total plasma cholesterol, and plasma TGs. The kinetics of forty proteins were quantified using the proteome dynamics method which revealed an increase in the fractional synthesis rate (FSR) of HDL-associated proteins in the prediabetic mice compared to control mice and a decrease in FSR in the diabetic mice. The pathway analysis revealed that proteins with altered turnover rates were involved in acute-phase response, lipid metabolism, and coagulation. In conclusion, prediabetes and diabetes have distinct effects on the turnover rates of HDL proteins. These findings suggest an early dysregulation of the HDL proteome dynamics can provide mechanistic insights into the changes in protein levels in these conditions.
Lysine acetylation of proteins has emerged as a key post-translational modification (PTM) that regulates mitochondrial metabolism. Acetylation may regulate energy metabolism by inhibiting and affecting the stability of metabolic enzymes and oxidative phosphorylation (OxPhos) subunits. While protein turnover can be easily measured, due to the low abundance of modified proteins, it has been difficult to evaluate the effect of acetylation on the stability of proteins in vivo. We applied 2H2O-metabolic labeling coupled with immunoaffinity and high-resolution mass spectrometry method to measure the stability of acetylated proteins in mouse liver based on their turnover rates. As a "proof-of-concept," we assessed the consequence of high-fat diet (HFD)-induced altered acetylation in protein turnover in LDL receptor-deficient (LDLR-/-) mice susceptible to diet-induced non-alcoholic fatty liver disease (NAFLD). HFD feeding for 12 weeks led to steatosis, the early stage of NAFLD. A significant reduction in acetylation of hepatic proteins was observed in NAFLD mice, based on immunoblot analysis and label-free quantification with mass spectrometry. Compared to control mice on a normal diet, NAFLD mice had overall increased turnover rates of hepatic proteins, including mitochondrial metabolic enzymes (0.159±0.079 vs. 0.132±0.068 day-1), suggesting their reduced stability. Also, acetylated proteins had slower turnover rates (increased stability) than native proteins in both groups (0.096±0.056 vs. 0.170±0.059 day-1 in control, and 0.111±0.050 vs. 0.208±0.074 day-1 in NAFLD). Furthermore, association analysis revealed a relationship between the HFD-induced decrease in acetylation and increased turnover rates for hepatic proteins in NAFLD mice. These changes were associated with increased expressions of the hepatic mitochondrial transcriptional factor (TFAM) and complex II subunit without any changes to other OxPhos proteins, suggesting that enhanced mitochondrial biogenesis prevented restricted acetylation-mediated depletion of mitochondrial proteins. We conclude that decreased acetylation of mitochondrial proteins may contribute to adaptive improved hepatic mitochondrial function in the early stages of NAFLD.
This study is devoted to the synthesis of a 40-membered macroheterocycle with its further nanostructuring by magnetite nanoparticles. The mentioned macroheterocycle was synthesized by the [2+2] cyclocondensation of the oxygen-containing...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.