Wastewater treatment plants (WWTPs) are acting as routes of microplastics (MPs) to the environment, hence the urgent need to examine MPs in wastewaters and different types of sludge through sampling campaigns covering extended periods of time. In this study, the efficiency of a municipal WWTP to remove MPs from wastewater was studied by collecting wastewater and sludge samples once in every two weeks during a 3-month sampling campaign. The WWTP was operated based on the conventional activated sludge (CAS) process and a pilot-scale membrane bioreactor (MBR). The microplastic particles and fibers from both water and sludge samples were identified by using an optical microscope, Fourier Transform Infrared (FTIR) microscope and Raman microscope. Overall, the retention capacity of microplastics in the studied WWTP was found to be 98.3%. Most of the MP fraction was removed before the activated sludge process. The efficiency of an advanced membrane bioreactor (MBR) technology was also examined. The main related finding is that MBR permeate contained 0.4 MP/L in comparison with the final effluent of the CAS process (1.0 MP/L). According to this study, both microplastic fibers and particles are discharged from the WWTP to the aquatic environment.
The harmonized procedures in terms of the sampling, sample treatment and identification of microplastics in different environmental samples are missing, which poses challenges to researchers to compare the results or to adopt ‘the most effective’ monitoring approach. Furthermore, in the related literature, the used procedures are rarely tested with spiked microplastics to predetermine their recovery rates. Without this knowledge, results should only be discussed as rough estimations of the real environmental concentrations of microplastics. In this study, six different methods previously used in microplastic studies of different media were tested with municipal wastewater and digested sludge samples, spiked with seven different types of plastic particles and fibres. Recovery rates, time consumption, advantages and disadvantages were assessed and most suitable treatment procedures (i.e. high recovery rates in short amount of time) were chosen for both wastewater and sludge. Suitability of staining with Rose Bengal was examined together with most efficient methods, but it did not improve the recovery of microplastics. In addition, the possible impacts of the treatments for identification with micro-Raman and FTIR microscope were assessed. Filtration with size fractioning was found to be the best method for both wastewater and sludge samples, with recovery rates of spiked microplastics around 91.4% and 92.9%, respectively. Electronic supplementary material The online version of this article (10.1007/s11356-019-04584-6) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.