The composition and dynamics of membrane protein complexes were studied in the cyanobacterium Synechocystis sp. PCC 6803 by two-dimensional blue native/SDS-PAGE followed by matrix-assisted laser-desorption ionization time of flight mass spectrometry. Approximately 20 distinct membrane protein complexes could be resolved from photoautotrophically grown wild-type cells. Besides the protein complexes involved in linear photosynthetic electron flow and ATP synthesis (photosystem [PS] I, PSII, cytochrome b 6 f, and ATP synthase), four distinct complexes containing type I NAD(P)H dehydrogenase (NDH-1) subunits were identified, as well as several novel, still uncharacterized protein complexes. The dynamics of the protein complexes was studied by culturing the wild type and several mutant strains under various growth modes (photoautotrophic, mixotrophic, or photoheterotrophic) or in the presence of different concentrations of CO 2 , iron, or salt. The most distinct modulation observed in PSs occurred in iron-depleted conditions, which induced an accumulation of CP43Ј protein associated with PSI trimers. The NDH-1 complexes, on the other hand, responded readily to changes in the CO 2 concentration and the growth mode of the cells and represented an extremely dynamic group of membrane protein complexes. Our results give the first direct evidence, to our knowledge, that the NdhF3, NdhD3, and CupA proteins assemble together to form a small low CO 2 -induced protein complex and further demonstrate the presence of a fourth subunit, Sll1735, in this complex. The two bigger NDH-1 complexes contained a different set of NDH-1 polypeptides and are likely to function in respiratory and cyclic electron transfer. Pulse labeling experiments demonstrated the requirement of PSII activity for de novo synthesis of the NDH-1 complexes.Photosynthetic organisms experience continuous fluctuation in their growth environment, including changes in light conditions, temperature, and nutrient availability. Cyanobacteria, the probable progenitors of chloroplasts, possess a remarkable capacity to adapt to a wide range of environmental conditions. Cyanobacteria are primarily photoautotrophic, but some strains, such as Synechocystis sp. PCC 6803, can also grow mixotrophically or photoheterotrophically in the presence of external Glc. This, together with their flexibility to genetic manipulation and simple nutrient requirements for growth, has rendered cyanobacteria into a favored model in deciphering the structurefunction relationships and acclimation strategies of the photosynthetic machinery.Energy-transducing thylakoid membranes are the targets for modification by a number of environmental variables. Light, the most important environmental factor for photosynthesis, induces a well-defined acclimation response, including changes in the amount and ratio of the two PSs (Fujita, 1997;Hihara, 1999) and in the abundance and composition of the light-harvesting phycobilisome antenna (Grossman et al., 1993(Grossman et al., , 2001. Similar responses in th...
SummaryThe photosystem II reaction centre protein D1 is encoded by the psbA gene. The D1 protein is stable in darkness but undergoes rapid turnover in the light. Here, we show that, in cyanobacterium Synechocystis sp. PCC6803, the synthesis of the D1 protein is regulated at the level of translation elongation in addition to the previously known transcriptional regulation. When Synechocystis sp. PCC6803 cells were transferred from light to darkness, the psbA mRNA remained abundant for hours. Cytosolic ribosomes were attached to psbA transcripts in the dark, and translation continued up to a distinct pausing site. However, ribosome nascent D1 chain complexes were not targeted to the thylakoid membrane, and no full-length D1 protein was produced in darkness. The arrest in translation elongation was released in the light, concomitantly with targeting of ribosome D1 nascent-chain complexes to the thylakoid membrane, allowing the synthesis of the full-length D1 protein. Downregulation of membrane targeting of ribosome complexes was also observed in the light if damage to the D1 protein was slow. This novel type of regulation of prokaryotic translation functions to balance the synthesis and degradation of the rapidly turning over photosystem II D1 protein in Synechocystis sp. PCC6803.
The photosystem II (PSII) reaction center protein D1 undergoes rapid light-dependent turnover, which is caused by photoinhibition. To identify the photoreceptor(s) involved in the light-dependent expression of the psbA gene encoding the D1 protein, we determined the action spectra of psbA transcription, PSII activity, photosynthesis and photoinhibition in Synechocystis sp. PCC 6803. In accordance with its phycobilisome antenna, PSII showed the highest activity in the spectral region from yellow to red and only low activity in the ultraviolet-A (UV-A) to green region. Photoinhibition, in turn, was fastest in UV-A to violet light and a minor peak was found in the orange region. The action spectrum of psbA transcription resembled closely that of photoinhibition, suggesting that photoinhibition creates a signal for up-regulation of the psbA gene.
Expression and regulation of psb genes, encoding various subunits of photosystem II (PSII), were studied in the cyanobacterium Synechocystis sp. PCC 6803. Transcription of the psbA and psbD genes, encoding the PSII reaction centre proteins D1 and D2, was rapidly activated upon onset of illumination and the transcription rates were enhanced at high irradiance. Gel retardation analysis demonstrated dark-enhanced binding of proteins to the upstream region of the psbA2 gene, pointing to a repressor-protein-based transcriptional regulation mechanism. Transcription of all the other psb genes also required light, but unlike the psbA and psbD genes, these psb genes did not respond specifically to high-light. Moreover, the transcription of these psb genes was activated slowly at onset of illumination, and was strictly dependent on de novo protein synthesis. We suggest that these psb genes are up-regulated in the light via transcriptional activator proteins, and the slow activation may be related to production of new PSII centres during growth. Apart from the two distinct mechanisms for transcriptional regulation, all psb genes shared a common regulation mechanism at the level of transcript stability, mediated by the redox poise of intersystem electron carrier(s).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.