A major challenge in constructing a Bayesian network (BN) is defining the node probability tables (NPT), which can be learned from data or elicited from domain experts. In practice, it is common not to have enough data for learning, and elicitation from experts is the only option. However, the complexity of defining NPT grows exponentially, making their elicitation process costly and error-prone. In this research, we conducted an exploratory study through a literature review that identified the main issues related to the task of probability elicitation and solutions to construct large-scale NPT while reducing the exposure to these issues. In this chapter, we present in detail three semiautomatic methods that reduce the burden for experts. We discuss the benefits and drawbacks of these methods, and present directions on how to improve them.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.