Human lumbar CSF patterns of Ab peptides were analysed by urea-based b-amyloid sodium dodecyl sulphate polyacrylamide gel electrophoresis with western immunoblot (Ab-SDS-PAGE/immunoblot). A highly conserved pattern of carboxyterminally truncated Ab1-37/38/39 was found in addition to Ab1-40 and Ab1-42. Remarkably, Ab1-38 was present at a higher concentration than Ab1-42, being the second prominent Ab peptide species in CSF. Patients with Alzheimer's disease (AD, n ¼ 12) and patients with chronic inflammatory CNS disease (CID, n ¼ 10) were differentiated by unique CSF Ab peptide patterns from patients with other neuropsychiatric diseases (OND, n ¼ 37). This became evident only when we investigated the amount of Ab peptides relative to their total Ab peptide concentration (Ab1-x%, fractional Ab peptide pattern), which may reflect diseasespecific c-secretase activities. Remarkably, patients with AD and CID shared elevated Ab1-38% values, whereas otherwise the patterns were distinct, allowing separation of AD from CID or OND patients without overlap. The presence of one or two ApoE e4 alleles resulted in an overall reduction of CSF Ab peptides, which was pronounced for Ab1-42. The severity of dementia was significantly correlated to the fractional Ab peptide pattern but not to the absolute Ab peptide concentrations. Keywords: Alzheimer's disease (AD), b-amyloid protein precursor/metabolism, biological markers, cerebrospinal fluid, 2D-PAGE, western immunoblot.
The consensus reached on preanalytical issues and the recommendations put forward during the ABSI consensus meetings are presented in this paper.
Neurochemical dementia diagnostics (NDD) can significantly improve the clinically based categorization of patients with early dementia disorders, and the cerebrospinal fluid (CSF) concentrations of amyloid b peptides ending at the amino acid position of 42 (Abx-42 and Ab1-42) are widely accepted biomarkers of Alzheimer's disease (AD). However, in subjects with constitutively high-or low-CSF concentrations of total Ab peptides (tAb), the NDD interpretation might lead to erroneous conclusions as these biomarkers seem to correlate better with the total Ab load than with the pathological status of a given patient in such cases. In this multicenter study, we found significantly increased CSF concentrations of phosphorylated Tau (pTau181) and total Tau in the group of subjects with high CSF Abx-40 concentrations and decreased Abx-42/x-40 concentration ratio compared with the group of subjects with low CSF Abx-40 and normal Ab ratio (p < 0.001 in both cases). Furthermore, we observed significantly decreased Ab ratio (p < 0.01) in the group of subjects with APOE e4 allele compared with the group of subjects without this allele. Surprisingly, patients with low-Abx-40 and the decreased Ab ratio characterized with decreased pTau181 (p < 0.05), and unaltered total Tau compared with the subjects with high Abx-40 and the Ab ratio in the normal range. We conclude that the amyloid b concentration ratio should replace the 'raw' concentrations of corresponding Ab peptides to improve reliability of the neurochemical dementia diagnosis.
As the differential diagnosis of dementias based on established clinical criteria is often difficult, biomarkers for applicable diagnostic testing are currently under intensive investigation. Amyloid plaques deposited in the brain of patients suffering from Alzheimer's disease, dementia with Lewy bodies (DLB) and Parkinson's disease dementia (PDD) mainly consist of carboxy-terminally elongated forms of amyloid-beta (Aβ) peptides, such as Aβ1–42. Absolute Aβ1–42 levels in CSF have shown diagnostic value for the diagnosis of Alzheimer's disease, but the discrimination among Alzheimer's disease, DLB and PDD was poor. A recently established quantitative urea-based Aβ-sodium-dodecylsulphate–polyacrylamide-gel-electrophoresis with Western immunoblot (Aβ-SDS–PAGE/immunoblot) revealed a highly conserved Aβ peptide pattern of the carboxy-terminally truncated Aβ peptides 1–37, 1–38, 1–39 in addition to 1–40 and 1–42 in human CSF. We used the Aβ-SDS–PAGE/immunoblot to investigate the CSF of 23 patients with Alzheimer's disease, 21 with DLB, 21 with PDD and 23 non-demented disease controls (NDC) for disease-specific alterations of the Aβ peptide patterns in its absolute and relative quantities. The diagnostic groups were matched for age and severity of dementia. The present study is the first attempt to evaluate the meaning of Aβ peptide patterns in CSF for differential diagnosis of the three neurodegenerative diseases—Alzheimer's disease, DLB and PDD. The Aβ peptide patterns displayed disease-specific variations and the ratio of the differentially altered Aβ1–42 to the Aβ1–37 levels subsequently discriminated all diagnostic groups from each other at a highly significant level, except DLB from PDD. Additionally, a novel peptide with Aβ-like immunoreactivity was observed constantly in the CSF of all 88 investigated patients. The pronounced percentage increase of this peptide in DLB allowed a highly significant discrimination from PDD. Using a cut-off point of 0.954%, this marker yielded a diagnostic sensitivity and specificity of 81 and 71%, respectively. From several lines of indication, we consider this peptide to represent an oxidized α-helical form of Aβ1–40 (Aβ1–40*). The increased abundance of Aβ1–40* probably reflects a disease-specific alteration of the Aβ1–40 metabolism in DLB. We conclude that Aβ peptide patterns reflect disease-specific pathophysiological pathways of different dementia syndromes as distinct neurochemical phenotypes. Although Aβ peptide patterns failed to fulfil the requirements for a sole biomarker, their combined evaluation with other biomarkers is promising in neurochemical dementia diagnosis. It is noteworthy that DLB and PDD exhibit distinct clinical temporal courses, despite their similar neuropathological appearance. Their distinct molecular phenotypes support the view of different pathophysiological pathways for each of these neurodegenerative diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.