The first effective inhibitors for human glutaminyl cyclase (QC) are described. The structures are developed by applying a ligand-based optimization approach starting from imidazole. Screening of derivatives of that heterocycle led to compounds of the imidazol-1-yl-alkyl thiourea type as a lead scaffold. A library of thiourea derivatives was synthesized, resulting in an inhibitory improvement by 2 orders of magnitude, leading to 1-(3-(1H-imidazol-1-yl)propyl)-3-(3,4-dimethoxyphenyl)thiourea as a potent inhibitor. Systematic exploitation of the scaffold revealed a strong impact on the inhibitory efficacy and resulted in the development of imidazole-propyl-thioamides as another new class of potent inhibitors. A flexible alignment of the most potent compounds of the thioamide and thiourea class and a QC substrate revealed a good match of characteristic features of the molecules, which suggests a similar binding mode of both inhibitors and the substrate to the active site of QC.
Murine glutaminyl cyclase (mQC) was identified in the insulinoma cell line beta-TC 3 by determination of enzymatic activity and RT-PCR. The cloned cDNA was expressed in the secretory pathway of the methylotrophic yeast Pichia pastoris and purified after fermentation using a new three-step protocol. mQC converted a set of various substrates with very similar specificity to human QC, indicating a virtually identical catalytic competence. Furthermore, mQC was competitively inhibited by imidazole derivatives. A screen of thiol reagents revealed cysteamine as a competitive inhibitor of mQC bearing a Ki value of 42 +/-2 microM. Substitution of the thiol or the amino group resulted in a drastic loss of inhibitory potency. The pH dependence of catalysis and inhibition support that an uncharged nitrogen of the inhibitors and the substrate is necessary in order to bind to the active site of the enzyme. In contrast to imidazole and cysteamine, the heterocyclic chelators 1,10-phenanthroline, 2,6-dipicolinic acid, and 8-hydroxyquinoline inactivated mQC in a time-dependent manner. In addition, citric acid inactivated the enzyme at pH 5.5. Inhibition by citrate was abolished in the presence of zinc ions. A determination of the metal content by total reflection X-ray fluorescence spectrometry and atomic absorption spectroscopy in mQC revealed stoichiometric amounts of zinc bound to the protein. Metal ion depletion appeared to have no significant effect on protein structure as shown by fluorescence spectroscopy, suggesting a catalytic role of zinc. The results demonstrate that mQC and probably all animal QCs are zinc-dependent catalysts. Apparently, during evolution from an ancestral protease, a switch occurred in the catalytic mechanism which is mainly based on a loss of one metal binding site.
Modified amyloid β (Aβ) peptides represent major constituents of the amyloid deposits in Alzheimer’s disease and Down’s syndrome. In particular, N‐terminal pyroglutamate (pGlu) following truncation renders Aβ more stable, increases hydrophobicity and the aggregation velocity. Recent evidence based on in vitro studies suggests that the cyclization of glutamic acid, leading to pGlu‐Aβ, is catalyzed by the enzyme glutaminyl cyclase (QC) following limited proteolysis of Aβ at the N‐terminus. Here, we studied the pGlu‐formation by rat QC in vitro as well as after microinjection of Aβ(1–40) and Aβ(3–40) into the rat cortex in vivo/in situ with and without pharmacological QC inhibition. Significant pGlu‐Aβ formation was observed following injection of Aβ(3–40) after 24 h, indicating a catalyzed process. The generation of pGlu‐Aβ from Aβ(3–40) was significantly inhibited by intracortical microinjection of a QC inhibitor. The study provides first evidence that generation of pGlu‐Aβ is a QC‐catalyzed process in vivo. The approach per se offers a strategy for a rapid evaluation of compounds targeting a reduction of pGlu formation at the N‐terminus of amyloid peptides.
The inhibition of human glutaminyl cyclase (hQC) has come into focus as a new potential approach for the treatment of Alzheimer's disease. The hallmark of this principle is the prevention of the formation of Abeta(3,11(pE)-40,42), as these Abeta-species were shown to be of elevated neurotoxicity and likely to act as a seeding core leading to an accelerated formation of Abeta-oligomers and fibrils. Starting from 1-(3-(1H-imidazol-1-yl)propyl)-3-(3,4-dimethoxyphenyl)thiourea, bioisosteric replacements led to the development of new classes of inhibitors. The optimization of the metal-binding group was achieved by homology modeling and afforded a first insight into the probable binding mode of the inhibitors in the hQC active site. The efficacy assessment of the hQC inhibitors was performed in cell culture, directly monitoring the inhibition of Abeta(3,11(pE)-40,42) formation.
Formation of N-terminal pyroglutamate (pGlu or pE) from glutaminyl or glutamyl precursors is catalyzed by glutaminyl cyclases (QC). As the formation of pGlu-amyloid has been linked with Alzheimer's disease, inhibitors of QCs are currently the subject of intense development. Here, we report three crystal structures of N-glycosylated mammalian QC from humans (hQC) and mice (mQC). Whereas the overall structures of the enzymes are similar to those reported previously, two surface loops in the neighborhood of the active center exhibit conformational variability. Furthermore, two conserved cysteine residues form a disulfide bond at the base of the active center that was not present in previous reports of hQC structure. Site-directed mutagenesis suggests a structure-stabilizing role of the disulfide bond. At the entrance to the active center, the conserved tryptophan residue, W(207), which displayed multiple orientations in previous structure, shows a single conformation in both glycosylated human and murine QCs. Although mutagenesis of W(207) into leucine or glutamine altered substrate conversion significantly, the binding constants of inhibitors such as the highly potent PQ50 (PBD150) were minimally affected. The crystal structure of PQ50 bound to the active center of murine QC reveals principal binding determinants provided by the catalytic zinc ion and a hydrophobic funnel. This study presents a first comparison of two mammalian QCs containing typical, conserved post-translational modifications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.