Metabolic traits are molecular phenotypes that can drive clinical phenotypes and may predict disease progression. Here, we report results from a metabolome- and genome-wide association study on 1H-NMR urine metabolic profiles. The study was conducted within an untargeted approach, employing a novel method for compound identification. From our discovery cohort of 835 Caucasian individuals who participated in the CoLaus study, we identified 139 suggestively significant (P<5×10−8) and independent associations between single nucleotide polymorphisms (SNP) and metabolome features. Fifty-six of these associations replicated in the TasteSensomics cohort, comprising 601 individuals from São Paulo of vastly diverse ethnic background. They correspond to eleven gene-metabolite associations, six of which had been previously identified in the urine metabolome and three in the serum metabolome. Our key novel findings are the associations of two SNPs with NMR spectral signatures pointing to fucose (rs492602, P = 6.9×10−44) and lysine (rs8101881, P = 1.2×10−33), respectively. Fine-mapping of the first locus pinpointed the FUT2 gene, which encodes a fucosyltransferase enzyme and has previously been associated with Crohn's disease. This implicates fucose as a potential prognostic disease marker, for which there is already published evidence from a mouse model. The second SNP lies within the SLC7A9 gene, rare mutations of which have been linked to severe kidney damage. The replication of previous associations and our new discoveries demonstrate the potential of untargeted metabolomics GWAS to robustly identify molecular disease markers.
Structure dictates the function of many RNAs, but secondary RNA structure analysis is either labor intensive and costly or relies on computational predictions that are often inaccurate. These limitations are alleviated by integration of structure probing data into prediction algorithms. However, existing algorithms are optimized for a specific type of probing data. Recently, new chemistries combined with advances in sequencing have facilitated structure probing at unprecedented scale and sensitivity. These novel technologies and anticipated wealth of data highlight a need for algorithms that readily accommodate more complex and diverse input sources. We implemented and investigated a recently outlined probabilistic framework for RNA secondary structure prediction and extended it to accommodate further refinement of structural information. This framework utilizes direct likelihood-based calculations of pseudo-energy terms per considered structural context and can readily accommodate diverse data types and complex data dependencies. We use real data in conjunction with simulations to evaluate performances of several implementations and to show that proper integration of structural contexts can lead to improvements. Our tests also reveal discrepancies between real data and simulations, which we show can be alleviated by refined modeling. We then propose statistical preprocessing approaches to standardize data interpretation and integration into such a generic framework. We further systematically quantify the information content of data subsets, demonstrating that high reactivities are major drivers of SHAPE-directed predictions and that better understanding of less informative reactivities is key to further improvements. Finally, we provide evidence for the adaptive capability of our framework using mock probe simulations.
The widely recounted story of the origin of cultivated strawberry (Fragaria × ananassa) oversimplifies the complex interspecific hybrid ancestry of the highly admixed populations from which heirloom and modern cultivars have emerged. To develop deeper insights into the three century long domestication history of strawberry, we reconstructed the genealogy as deeply as possible—pedigree records were assembled for 8,851 individuals, including 2,656 cultivars developed since 1775. The parents of individuals with unverified or missing pedigree records were accurately identified by applying exclusion analysis to array-genotyped single nucleotide polymorphisms. We identified 187 wild octoploid and 1,171 F. × ananassa founders in the genealogy, from the earliest hybrids to modern cultivars. The pedigree networks for cultivated strawberry are exceedingly complex labyrinths of ancestral interconnections formed by diverse hybrid ancestry, directional selection, migration, admixture, bottlenecks, overlapping generations, and recurrent hybridization with common ancestors that have unequally contributed allelic diversity to heirloom and modern cultivars. Fifteen to 333 ancestors were predicted to have transmitted 90% of the alleles found in country-, region-, and continent-specific populations. Using parent-offspring edges in the global pedigree network, we found that selection cycle lengths over the last 200 years of breeding have been extraordinarily long (16.0-16.9 years/generation) but decreased to a present-day range of 6.0-10.0 years/generation. Our analyses uncovered conspicuous differences in the ancestry and structure of North American and European populations and shed light on forces that have shaped phenotypic diversity in F. × ananassa.
Establishing a link between RNA structure and function remains a great challenge in RNA biology. The emergence of high-throughput structure profiling experiments is revolutionizing our ability to decipher structure, yet principled approaches for extracting information on structural elements directly from these data sets are lacking. We present PATTERNA, an unsupervised pattern recognition algorithm that rapidly mines RNA structure motifs from profiling data. We demonstrate that PATTERNA detects motifs with an accuracy comparable to commonly used thermodynamic models and highlight its utility in automating data-directed structure modeling from large data sets. PATTERNA is versatile and compatible with diverse profiling techniques and experimental conditions.
Natural genetic variation can have a pronounced influence on human taste perception, which in turn may influence food preference and dietary choice. Genome-wide association studies represent a powerful tool to understand this influence. To help optimize the design of future genome-wide-association studies on human taste perception we have used the well-known TAS2R38-PROP association as a tool to determine the relative power and efficiency of different phenotyping and data-analysis strategies. The results show that the choice of both data collection and data processing schemes can have a very substantial impact on the power to detect genotypic variation that affects chemosensory perception. Based on these results we provide practical guidelines for the design of future GWAS studies on chemosensory phenotypes. Moreover, in addition to the TAS2R38 gene past studies have implicated a number of other genetic loci to affect taste sensitivity to PROP and the related bitter compound PTC. None of these other locations showed genome-wide significant associations in our study. To facilitate further, target-gene driven, studies on PROP taste perception we provide the genome-wide list of p-values for all SNPs genotyped in the current study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.