Tilting pad journal bearings are usually employed in turbomachines for their stable behavior at high rotational speeds. Devoted test rigs have been realized to validate the predictions of theoretical models. However, the design of new high-performance and large-size bearings needs to be supported by experimental investigations on high-performance large test rigs. The main characteristics of a recently built facility for testing large tilting pad journal bearings with diameters from 150 to 300 mm are described in this work. The test rig is versatile and can be used to test bearings of different size, configurations and to investigate the influence of many parameters, even the effect of misalignment. Sample results of the static characterization of a four-pad high-performance tilting pad journal bearing are reported evidencing some transient effects. A few sample dynamic results are also reported. The presented experimental results demonstrated the capabilities of the rig for investigating the static and the dynamic characteristics of the bearings accurately measuring slow and fast variables.
A numerical model developed by Thorat & Childs [1] has indicated that the conventional frequency independent model for labyrinth seals is invalid for rotor surface velocities reaching a significant fraction of Mach 1. A theoretical one-control-volume (1CV) model based on a leakage equation that yields a reasonably good comparison with experimental results is considered in the present analysis. The numerical model yields frequency-dependent rotordynamic coefficients for the seal. Three real centrifugal compressors are analyzed to compare stability predictions with and without frequency-dependent labyrinth seal model. Three different compressor services are selected to have a comprehensive scenario in terms of pressure and molecular weight (MW). The molecular weight is very important for Mach number calculation and consequently for the frequency dependent nature of the coefficients. A hydrogen recycle application with MW around 8, a natural gas application with MW around 18, and finally a propane application with molecular weight around 44 are selected for this comparison. Useful indications on the applicability range of frequency dependent coefficients are given.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.