This paper investigates the application of process mining methodology on the processes of a mobile asset in mining operations as a means of identifying opportunities to improve the operational efficiency of such. Industry 4.0 concepts with related extensive digitalization of industrial processes enable the acquisition of a huge amount of data that can and should be used for improving processes and decision-making. Utilizing this data requires appropriate data processing and data analysis schemes. In the processing and analysis stage, most often, a broad spectrum of data mining algorithms is applied. These are data-oriented methods and they are incapable of mapping the cause-effect relationships between process activities. However, in this scope, the importance of process-oriented analytical methods is increasingly emphasized, namely process mining (PM). PM techniques are a relatively new approach, which enable the construction of process models and their analytics based on data from enterprise IT systems (data are provided in the form of so-called event logs). The specific working environment and a multitude of sensors relevant for the working process causes the complexity of mining processes, especially in underground operations. Hence, an individual approach for event log preparation and gathering contextual information to be utilized in process analysis and improvement is mandatory. This paper describes the first application of the concept of PM to investigate the normal working process of a roof bolter, operating in an underground mine. By applying PM, the irregularities of the operational scheme of this mobile asset have been identified. Some irregularities were categorized as inefficiencies that are caused by either failure of machinery or suboptimal utilization of the same. In both cases, the results achieved by applying PM to the activity log of the mobile asset are relevant for identifying the potential for improving the efficiency of the overall working process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.