A Ginzburg–Landau model for the macroscopic behaviour of a shape memory alloy is proposed. The model is essentially one-dimensional, in that we consider the effect of the martensitic phase transition in terms of a uniaxial deformation along a fixed direction and we use a scalar order parameter whose equilibrium values describe the austenitic phase and the two martensitic variants. The model relies on a Ginzburg–Landau free energy defined as a function of macroscopically measurable quantities, and accounts for thermal effects; couplings between the various relevant physical aspects are established based on thermodynamic principles. The theoretical model has been implemented within a finite-element framework and a number of numerical tests are presented which investigate the mechanical behaviour of the model under different conditions; the results obtained are analyzed in relation to experimental evidence available in the literature. In particular, the influence of the strain rate and of the ambient conditions on the response of the model is highlighted
In this communication, we propose a model to study the non-equilibrium process by which actin stress fibers develop force in contractile cells. The emphasis here is on the nonequilibrium thermodynamics, which is necessary to address the mechanics as well as the chemistry of dynamic cell contractility. In this setting we are able to develop a framework that relates (a) the dynamics of force generation within the cell and (b) the cell's response to external stimuli to the chemical processes occurring within the cell, as well as to the mechanics of linkage between the stress fibers, focal adhesions and extra-cellular matrix.
We apply a recently developed model of cytoskeletal force generation to study a cell's intrinsic contractility, as well as its response to external loading. The model is based on a nonequilibrium thermodynamic treatment of the mechanochemistry governing force in the stress fiber-focal adhesion system. Our computational study suggests that the mechanical coupling between the stress fibers and focal adhesions leads to a complex, dynamic, mechanochemical response. We collect the results in response maps whose regimes are distinguished by the initial geometry of the stress fiber-focal adhesion system, and by the external load on the cell. The results from our model connect qualitatively with recent studies on the force response of smooth muscle cells on arrays of polymeric microposts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.