Ventricular assist devices (VADs), among which the HeartMate 3 (HM3) is the latest clinically approved representative, are often the therapy of choice for patients with end-stage heart failure. Despite advances in the prevention of pump thrombosis, rates of stroke and bleeding remain high. These complications are attributed to the flow field within the VAD, among other factors. One of the HM3's characteristic features is an artificial pulse that changes the rotor speed periodically by 4000 rpm, which is meant to reduce zones of recirculation and stasis. In this study, we investigated the effect of this speed modulation on the flow fields and stresses using high-resolution computational fluid dynamics. To this end, we compared Eulerian and Lagrangian features of the flow fields during constant pump operation, during operation with the artificial pulse feature, and with the effect of the residual native cardiac cycle. We observed good washout in all investigated situations, which may explain the low incidence rates of pump thrombosis. The artificial pulse had no additional benefit on scalar washout performance, but it induced rapid variations in the flow velocity and its gradients. This may be relevant for the removal of deposits in the pump. Overall, we found that viscous stresses in the HM3 were lower than in other current VADs. However, the artificial pulse substantially increased turbulence, and thereby also total stresses, which may contribute to clinically observed issues related to hemocompatibility.
Patients with ventricular assist devices still suffer from high rates of adverse events. Since many of these complications are linked to the flow field within the pump, optimization of the device geometry is essential. To investigate design aspects that influence the flow field, we developed a centrifugal blood pump using industrial guidelines. We then systematically varied selected design parameters and investigated their effects on hemodynamics and hydraulic performance using computational fluid dynamics. We analysed the flow fields based on Eulerian and Lagrangian features, shear stress histograms and six indicators of hemocompatibility. Within the investigated range of clearance gaps (50-500 µm), number of impeller blades (4-7), and semi-open versus closed shroud design, we found association of potentially damaging shear stress conditions with larger gap size and more blades. The extent of stagnation and recirculation zones was reduced with lower numbers of blades and a semi-open impeller, but it was increased with smaller clearance. The Lagrangian hemolysis index, a metric commonly applied to estimate blood damage, showed a negative correlation with hydraulic efficiency and no correlation with the Eulerian threshold-based metric.
BackgroundPowered exoskeletons are a promising approach to restore the ability to walk after spinal cord injury (SCI). However, current exoskeletons remain limited in their walking speed and ability to support tasks of daily living, such as stair climbing or overcoming ramps. Moreover, training progress for such advanced mobility tasks is rarely reported in literature. The work presented here aims to demonstrate the basic functionality of the VariLeg exoskeleton and its ability to enable people with motor complete SCI to perform mobility tasks of daily life.MethodsVariLeg is a novel powered lower limb exoskeleton that enables adjustments to the compliance in the leg, with the objective of improving the robustness of walking on uneven terrain. This is achieved by an actuation system with variable mechanical stiffness in the knee joint, which was validated through test bench experiments. The feasibility and usability of the exoskeleton was tested with two paraplegic users with motor complete thoracic lesions at Th4 and Th12. The users trained three times a week, in 60 min sessions over four months with the aim of participating in the CYBATHLON 2016 competition, which served as a field test for the usability of the exoskeleton. The progress on basic walking skills and on advanced mobility tasks such as incline walking and stair climbing is reported. Within this first study, the exoskeleton was used with a constant knee stiffness.ResultsTest bench evaluation of the variable stiffness actuation system demonstrate that the stiffness could be rendered with an error lower than 30 Nm/rad. During training with the exoskeleton, both users acquired proficient skills in basic balancing, walking and slalom walking. In advanced mobility tasks, such as climbing ramps and stairs, only basic (needing support) to intermediate (able to perform task independently in 25% of the attempts) skill levels were achieved. After 4 months of training, one user competed at the CYBATHLON 2016 and was able to perform 3 (stand-sit-stand, slalom and tilted path) out of 6 obstacles of the track. No adverse events occurred during the training or the competition.ConclusionDemonstration of the applicability to restore ambulation for people with motor complete SCI was achieved. The CYBATHLON highlighted the importance of training and gaining experience in piloting an exoskeleton, which were just as important as the technical realization of the robot.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.