Recently a splitting approach has been presented for the simulation of sonicboom propagation. Splitting methods allow one to divide complicated partial differential equations into simpler parts that are solved by specifically tailored numerical schemes. The present work proposes a second order exponential integrator for the numerical solution of sonic-boom propagation modelled through a dispersive equation with Burgers' nonlinearity. The linear terms are efficiently solved in frequency space through FFT, while the nonlinear terms are efficiently solved by a WENO scheme. The numerical method is designed to be highly parallelisable and therefore takes full advantage of modern computer hardware. The new approach also improves the accuracy compared to the splitting method and it reduces oscillations. The enclosed numerical results illustrate that parallelisation on a CPU results in a speedup of 22 times faster than the straightforward sequential version. The GPU implementation further accelerates the runtime by a factor 3, which improves to 5 when single precision is used instead of double precision.
The present work proposes a second-order time splitting scheme for a linear dispersive equation with a variable advection coefficient subject to transparent boundary conditions. For its spatial discretization, a dual Petrov-Galerkin method is considered which gives spectral accuracy. The main difficulty in constructing a second-order splitting scheme in such a situation lies in the compatibility condition at the boundaries of the sub-problems. In particular, the presence of an inflow boundary condition in the advection part results in order reduction. To overcome this issue a modified Strang splitting scheme is introduced that retains second-order accuracy. For this numerical scheme a stability analysis is conducted. In addition, numerical results are shown to support the theoretical derivations.
The present work proposes a second-order time splitting scheme for a linear dispersive equation with a variable advection coefficient subject to transparent boundary conditions. For its spatial discretization, a dual Petrov–Galerkin method is considered which gives spectral accuracy. The main difficulty in constructing a second-order splitting scheme in such a situation lies in the compatibility condition at the boundaries of the sub-problems. In particular, the presence of an inflow boundary condition in the advection part results in order reduction. To overcome this issue a modified Strang splitting scheme is introduced that retains second-order accuracy. For this numerical scheme a stability analysis is conducted. In addition, numerical results are shown to support the theoretical derivations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.