Abstract:The purpose of this study was to compare the essential oil profiles of four Croatian Teucrium species (Lamiaceae), as determined by GC and GC/MS, with their antiphytoviral efficiency. A phytochemical analysis showed that T. polium, T. flavum, T. montanum and T. chamaedrys are characterized by similar essential oil compositions. The investigated oils are characterized by a high proportion of the sesquiterpene hydrocarbons β-caryophyllene (7.1-52.0%) and germacrene D (8.7-17.0%). Other important components were β-pinene from T. montanum and α-pinene from T. flavum. The investigated essential oils were proved to reduce lesion number in the local host Chenopodium quinoa Willd. infected with Cucumber Mosaic Virus (CMV), with reductions of 41. 4%, 22.9%, 44.3% and 25.7%, respectively.
The chemical compositions of the essential oils obtained by hydrodistillation of the aerial parts of Croatian Eryngium alpinum L. and E. amethystinum L. were characterized by GC-FID and GC/MS analyses. The main components identified were the sesquiterpene β-caryophyllene (19.7%) in the oil of E. amethystinum and the oxygenated sesquiterpene caryophyllene oxide (21.6%) in the oil of E. alpinum. Overall, 32 and 35 constituents were detected in the essential oils of the aerial parts of E. alpinum and E. amethystinum, respectively, representing 92.4 and 93.1% of the total oil compositions. The essential oils of both Eryngium species were proved to reduce the number of lesions in the local host Chenopodium quinoa infected with cucumber mosaic virus and an associated satellite. This is the first investigation of antiphytoviral activity of essential oils of Eryngium species.
The chemical profile, antiproliferative, antioxidant and antiphytoviral activities of the species Hypericum perforatum ssp. veronense (Schrank) H. Lindb. (Clusiaceae) were investigated. Free volatiles were isolated and the chemical composition was determined in the lipophilic fraction (essential oil) and for the first time in the water fraction (hydrosol). The aim is to provide phytochemical data for H. perforatum ssp. veronense useful for distinguishing ssp. veronense from ssp. angustifolium, as there are taxonomic disagreements between them and the composition of the secretory products may be helpful in this respect. In the essential oil, the most abundant compounds identified were α-pinene and n-nonane, while in the hydrosol, myrtenol, carvacrol and α-pinene were the most abundant. Overall, the class of monoterpenes and oxygenated monoterpenes dominated in the EO and hydrosol samples. The essential oil showed high antioxidant activity, in contrast to the antiproliferative activity, where the hydrosol showed exceptional activity against three cancer cell lines: Hela (cervical cancer cell line), HCT116 (human colon cancer cell line) and U2OS (human osteosarcoma cell line). Both the essential oil and hydrosol showed antiphytoviral activity against tobacco mosaic virus infection on the local host plants. This is the first report dealing with biological activities of hydrosol of H. perforatum ssp. veronense, and the obtained results suggest that this traditional medicinal plant is a valuable source of volatiles with promising antiproliferative, antioxidant and antiphytoviral activities.
The cytogenetic characterization of Centaurea solstitialis L. (Asteraceae) showed a chromosome number of 2n = 16. Karyotype is composed by four pairs of metacentric, two pairs of submetacentric and two pairs of subtelocentric chromosomes. Physical mapping of two rDNA probes revealed two loci of 35S and one locus of 5S rRNA genes. Chromomycin fluorochrome banding revealed that all rDNA loci were GC rich. The genome size (2C-value) of 1.95 pg classes this species in the group of very small genomes. Chemical composition of C. solstitialis volatile oil (VO) from Croatia, studied with gas chromatography-mass spectrometry showed dominant components as it follows: hexadecanoic acid, α-linolenic acid, germacrene D and heptacosane. Antioxidant capacity, measured by ferric reducing power assay and 2,2-diphenyl-1-picrylhydrazyl methods, as well as inhibition of acetyl- and butyrylcholinesterase of VO was lower comparing to a standard solutions. Volatile oil tested with disc diffusion method showed good inhibitory potential against Pseudomonas aeruginosa, Escherichia coli and all tested fungi: Candida albicans, Penicillium funiculosum and Aspergillus fumigatus. The microdilution method showed best activity against Chronobacter sakazakii and A. fumigatus.
Bunias erucago belongs to the Brassicaceae family, which represents a forgotten crop of the Euro-Mediterranean area. The aim of the present study was to determine the glucosinolate profile in different plant parts and biological properties (antioxidant, anticholinesterase, and cytotoxic activities) of the isolates containing glucosinolate breakdown products. The chemical profiles were determined by using HPLC-PDA-MS/MS of desulfoglucosinolates and GC-MS of glucosinolate degradation products. The analysis of B. erucago showed the presence of seven glucosinolates: gluconapin (1), glucoraphasatin (2), glucoraphenin (3), glucoerucin (4), glucoraphanin (5), glucotropaeolin (6), and glucosinalbin (7). The total glucosinolate content ranged from 7.0 to 14.6 µmol/g of dry weight, with the major glucosinolate glucosinalbin in all parts. The antioxidant activity of all volatile isolates was not notable. At a tested concentration of 227 μg/mL, flower hydro-distillate (FH) showed good AChE inhibition, i.e., 40.9%, while root hydro-distillate (RH) had good activity against BChE, i.e., 54.3%. FH showed the best activity against both tested human bladder cancer cell lines, i.e., against T24 after 72 h, which have IC50 of 16.0 μg/mL, and against TCCSUP after 48 h with IC50 of 7.8 μg/mL, and can be considered as highly active. On the other hand, RH showed weak activity against tested cancer cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.