In this study, functional Pluronic F127 precursors were designed and synthesized for the preparation of thermosensitive hydrogels. Using linear Pluronic thioacetate and Pluronic multi-acrylate precursors, F127-based hydrogels were prepared through thioacetate deprotection-mediated Michael-type addition. The properties of these gels were compared to those obtained through free radical crosslinking of F127 diacrylate. Temperature was found to have a clear influence on gel swelling as a result of F127 thermoresponsiveness. The macromolecular architecture and functionality of the precursors were also optimized and characterized in terms of gelation kinetics and drug diffusion. In vitro tests were conducted on fibroblasts and endothelial cells to assess their response to cellular adhesion with Pluronic gels that were functionalized with an RGD peptide or pretreated with serum proteins to promote cell adhesion. This study provides a method for creating tailored hydrogels suitable for various biomedical applications, such as soft-tissue engineering, cell encapsulation, wound healing, and sustained delivery of therapeutic molecules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.