Although animal lectins usually show a high degree of specificity for glycan structures, their single-site binding affinities are typically weak, a drawback which is often compensated in biological systems by an oligovalent presentation of carbohydrate epitopes. For the design of monovalent glycomimetics, structural information regarding solution and bound conformation of the carbohydrate lead represents a valuable starting point. In this paper, we focus on the conformation of the trisaccharide Le(x) (Gal[Fucα(1-3)]β(1-4)GlcNAc). Mainly because of the unfavorable tumbling regime, the elucidation of the solution conformation of Le(x) by NMR has only been partially successful so far. Le(x) was therefore attached to a (13)C,(15)N-labeled protein. (13)C,(15)N-filtered NOESY NMR techniques at ultrahigh field allowed increasing the maximal NOE enhancement, resulting in a high number of distance restraints per glycosidic bond and, consequently, a well-defined structure. In addition to the known contributors to the conformational restriction of the Le(x) structure (exoanomeric effect, steric compression induced by the NHAc group adjacent to the linking position of L-fucose, and the hydrophobic interaction of L-fucose with the β-face of D-galactose), a nonconventional C-H···O hydrogen bond between H-C(5) of L-fucose and O(5) of D-galactose was identified. According to quantum mechanical calculations, this C-H···O hydrogen bond is the most prominent factor in stabilization, contributing 40% of the total stabilization energy. We therefore propose that the nonconventional hydrogen bond contributing to a reduction of the conformational flexibility of the Le(x) core represents a novel element of the glycocode. Its relevance to the stabilization of related branched oligosaccharides is currently being studied.
The increasing understanding of the essential role of carbohydrates in development, and in a wide range of diseases fuels a rapidly growing interest in the basic principles governing carbohydrate-protein interactions. A still heavily debated issue regarding the recognition process is the degree of flexibility or rigidity of oligosaccharides. Combining NMR structure determination based on extensive experimental data with DFT and database searches, we have identified a set of trisaccharide motifs with a similar conformation that is characterized by a non-conventional C-H⋅⋅⋅O hydrogen bond. These motifs are present in numerous classes of oligosaccharides, found in everything from bacteria to mammals, including Lewis blood group antigens but also unusual motifs from amphibians and marine invertebrates. The set of trisaccharide motifs can be summarized with the consensus motifs X-β1,4-[Fucα1,3]-Y and X-β1,3-[Fucα1,4]-Y-a secondary structure we name [3,4]F-branch. The wide spectrum of possible modifications of this scaffold points toward a large variety of glycoepitopes, which nature generated using the same underlying architecture.
Bacteria in the genus Cellulomonas are well known as secretors of a variety of mesophilic carbohydrate degrading enzymes (e.g., cellulases and hemicellulases), active against plant cell wall polysaccharides. Recent proteomic analysis of the mesophilic bacterium Cellulomonas fimi ATCC484 revealed uncharacterized enzymes for the hydrolysis of plant cell wall biomass. Celf_1230 (CfCel6C), a secreted protein of Cellulomonas fimi ATCC484, is a novel member of the GH6 family of cellulases that could be successfully expressed in Escherichia coli. This enzyme displayed very little enzymatic/hydrolytic activity at 30 °C, but showed an optimal activity around 65 °C, and exhibited a thermal denaturation temperature of 74 °C. In addition, it also strongly bound to filter paper despite having no recognizable carbohydrate binding module. Our experiments show that CfCel6C is a thermostable endoglucanase with activity on a variety of β-glucans produced by an organism that struggles to grow above 30 °C.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.