Nanocarriers allow the connection between biomolecules and other structures to enhance the treatment efficacy, through the biomolecule's properties to an existing drug, or to allow a better and specific delivery. Apigenin and orientin are biomolecules with excellent therapeutic properties that are proposed in the fight against COVID-19. Besides that, graphene oxide is a nanomaterial that exhibits antiviral activity and is used as a nanocarrier of several drugs. We evaluated in this work, through molecular docking, the binding affinity between these structures to the receptor-binding domain of spike protein of two coronavirus variants, Delta and Omicron. The results indicate that all the structures exhibit affinity with the two protein targets, with binding affinity values of −11.88 to −6.65 kcal/mol for the Delta variant and values of −9.58 to −13.20 kcal/ mol for the Omicron variant, which is a successful value as found in the literature as a potential inhibitor of SARS-CoV-2 infection. Also, through first-principles calculations based on Density Functional Theory, the interaction of graphene oxide with the biomolecules apigenin and orientin occurred. The results exhibit weak binding energy, which indicates that physical adsorption occurs, with better results when the biomolecule is set in parallel to the nanomaterial due to attractive π-π staking. These results are conducive to the development of a nanocarrier.
The tau protein is considered an important qualitative and quantitative biomarker for Alzheimer’s disease in its asymptomatic phase. In 2011, biomarkers were suggested by the National Institute on Aging-Azheimer’s Association as a new criterion for the early diagnosis of Alzheimer’s disease. Thus, highlighting the non-existence of theoretical research on the subject, we investigated the binding interaction properties between phosphorylated tau protein and a theoretically modeled ligands constituted by the fullerol functionalized with radiopharmaceuticals from an in silico approach via molecular docking and density functional theory (DFT) ab initio computational simulation. The results demonstrated that the ligand with the greatest affinity-based binding energy to the protein was fullerol + F-THK5105. However, all systems were considered promising for the development of a potential diagnostic nanomarker. These theoretical results could efficiently contribute to reduce the time and the cost for future experimental preclinical studies and open new opportunities toward molecular recognition in nanomedicine.
This work reviews the literature on the molecular docking process, presenting the simulation methodology, the construction parameters and how the results are interpreted. In this context, a study of molecular docking is carried out using the binding protein of the COVID-19 virus with the human cell, called spike, and an antiviral molecule called heparin. As a result, the parameters reached, distances, energies and three-dimensional positioning of the ligand-receptor system are shown. This type of work is currently done in the area of discovering new drugs, or drugs discovered with the aid of the computer. As a final discussion, it concludes the importance of computational knowledge as a way to support various chemical, physical and biological activities in the multidisciplinary field of nanoscience and nanotechnology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.