Recent evidence suggests chronic myeloid leukemia (CML) stem cells are insensitive to kinase inhibitors and responsible for minimal residual disease in treated patients. We investigated whether CML stem cells, in a transgenic mouse model of CML-like disease or derived from patients, are dependent on Bcr-Abl. In the transgenic model, after retransplantation, donor-derived CML stem cells in which Bcr-Abl expression had been induced and subsequently shut off were able to persist in vivo and reinitiate leukemia in secondary recipients on Bcr-Abl reexpression. Bcr-Abl knockdown in human CD34(+) CML cells cultured for 12 days in physiologic growth factors achieved partial inhibition of Bcr-Abl and downstream targets p-CrkL and p-STAT5, inhibition of proliferation and colony forming cells, but no reduction of input cells. The addition of dasatinib further inhibited p-CrkL and p-STAT5, yet only reduced input cells by 50%. Complete growth factor withdrawal plus dasatinib further reduced input cells to 10%; however, the surviving fraction was enriched for primitive leukemic cells capable of growth in a long-term culture-initiating cell assay and expansion on removal of dasatinib and addition of growth factors. Together, these data suggest that CML stem cell survival is Bcr-Abl kinase independent and suggest curative approaches in CML must focus on kinase-independent mechanisms of resistance.
In a previously developed inducible transgenic mouse model of chronic myeloid leukemia, we now demonstrate that the disease is transplantable using BCR-
BackgroundSomatic calreticulin (CALR), Janus kinase 2 (JAK2), and thrombopoietin receptor (MPL) mutations essentially show mutual exclusion in myeloproliferative neoplasms (MPN), suggesting that they activate common oncogenic pathways. Recent data have shown that MPL function is essential for CALR mutant-driven MPN. However, the exact role and the mechanisms of action of CALR mutants have not been fully elucidated.MethodsThe murine myeloid cell line 32D and human HL60 cells overexpressing the most frequent CALR type 1 and type 2 frameshift mutants were generated to analyze the first steps of cellular transformation, in the presence and absence of MPL expression. Furthermore, mutant CALR protein stability and secretion were examined using brefeldin A, MG132, spautin-1, and tunicamycin treatment.ResultsThe present study demonstrates that the expression of endogenous Mpl, CD41, and the key megakaryocytic transcription factor NF-E2 is stimulated by type 1 and type 2 CALR mutants, even in the absence of exogenous MPL. Mutant CALR expressing 32D cells spontaneously acquired cytokine independence, and this was associated with increased Mpl mRNA expression, CD41, and NF-E2 protein as well as constitutive activation of downstream signaling and response to JAK inhibitor treatment. Exogenous expression of MPL led to constitutive activation of STAT3 and 5, ERK1/2, and AKT, cytokine-independent growth, and reduction of apoptosis similar to the effects seen in the spontaneously outgrown cells. We observed low CALR-mutant protein amounts in cellular lysates of stably transduced cells, and this was due to accelerated protein degradation that occurred independently from the ubiquitin-proteasome system as well as autophagy. CALR-mutant degradation was attenuated by MPL expression. Interestingly, we found high levels of mutated CALR and loss of downstream signaling after blockage of the secretory pathway and protein glycosylation.ConclusionsThese findings demonstrate the potency of CALR mutants to drive expression of megakaryocytic differentiation markers such as NF-E2 and CD41 as well as Mpl. Furthermore, CALR mutants undergo accelerated protein degradation that involves the secretory pathway and/or protein glycosylation.Electronic supplementary materialThe online version of this article (doi:10.1186/s13045-016-0275-0) contains supplementary material, which is available to authorized users.
The psl gene cluster, comprising 15 cotranscribed genes from Pseudomonas aeruginosa, was recently identified as being involved in exopolysaccharide biosynthesis and biofilm formation. In this study, we investigated the regulation of the psl gene cluster and the function of the first gene in this cluster, the pslA gene. PslA shows strong similarities to UDP-glucose lipid carriers. An isogenic marker-free pslA deletion mutant of P. aeruginosa PAO1 deficient in attachment and biofilm formation was used for complementation studies. The expression of only the pslA gene, comprising a coding region of 1,437 bp, restored the biofilm-forming phenotype of the wild type, indicating that PslA is required for biofilm formation by nonmucoid P. aeruginosa. The promoter region of the psl gene cluster, which encodes PslA-PslO, was identified by rapid amplification of cDNA 5 ends. Promoter assays using transcriptional fusions to lacZ and gfp indicated a constitutive expression of the psl cluster in planktonic cells and a highly regulated and localized expression in biofilms, respectively. Expression of the psl cluster in biofilms was almost exclusively found in the centers of microcolonies, as revealed by confocal laser scanning microscopy. These data suggest that constitutive expression of the psl operon enables efficient attachment to surfaces and that regulated localized psl operon expression is required for biofilm differentiation.
• Imatinib does not prevent accumulation of genomic instability in CML-CP.• Imatinib-refractory leukemia stem cells may be a source of genomic instability in CML-CP.Genomic instability is a hallmark of chronic myeloid leukemia in chronic phase (CML-CP) resulting in BCR-ABL1 mutations encoding resistance to tyrosine kinase inhibitors (TKIs) and/or additional chromosomal aberrations leading to disease relapse and/or malignant progression. TKI-naive and TKI-treated leukemia stem cells (LSCs) and leukemia progenitor cells (LPCs) accumulate high levels of reactive oxygen species (ROS) and oxidative DNA damage. To determine the role of TKI-refractory LSCs in genomic instability, we used a murine model of CML-CP where ROS-induced oxidative DNA damage was elevated in LSCs, including quiescent LSCs, but not in LPCs. ROSinduced oxidative DNA damage in LSCs caused clinically relevant genomic instability in CML-CP-like mice, such as TKI-resistant BCR-ABL1 mutations (E255K, T315I, H396P), deletions in Ikzf1 and Trp53, and additions in Zfp423 and Idh1. Despite inhibition of BCR-ABL1 kinase, imatinib did not downregulate ROS and oxidative DNA damage in TKIrefractory LSCs to the levels detected in normal cells, and CML-CP-like mice treated with imatinib continued to accumulate clinically relevant genetic aberrations. Inhibition of class I p21-activated protein kinases by IPA3 downregulated ROS in TKI-naive and TKI-treated LSCs. Altogether, we postulate that genomic instability may originate in the most primitive TKI-refractory LSCs in TKI-naive and TKI-treated patients. (Blood. 2013;121(20):4175-4183)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.