Generalized tonic-clonic seizures are among the most dramatic physiological events in the nervous system. The brain regions involved during partial seizures with secondary generalization have not been thoroughly investigated in humans. We used single photon emission computed tomography (SPECT) to image cerebral blood flow (CBF) changes in 59 secondarily generalized seizures from 53 patients. Images were analysed using statistical parametric mapping to detect cortical and subcortical regions most commonly affected in three different time periods: (i) during the partial seizure phase prior to generalization; (ii) during the generalization period; and (iii) post-ictally. We found that in the pre-generalization period, there were focal CBF increases in the temporal lobe on group analysis, reflecting the most common region of partial seizure onset. During generalization, individual patients had focal CBF increases in variable regions of the cerebral cortex. Group analysis during generalization revealed that the most consistent increase occurred in the superior medial cerebellum, thalamus and basal ganglia. Post-ictally, there was a marked progressive CBF increase in the cerebellum which spread to involve the bilateral lateral cerebellar hemispheres, as well as CBF increases in the midbrain and basal ganglia. CBF decreases were seen in the fronto-parietal association cortex, precuneus and cingulate gyrus during and following seizures, similar to the 'default mode' regions reported previously to show decreased activity in seizures and in normal behavioural tasks. Analysis of patient behaviour during and following seizures showed impaired consciousness at the time of SPECT tracer injections. Correlation analysis across patients demonstrated that cerebellar CBF increases were related to increases in the upper brainstem and thalamus, and to decreases in the fronto-parietal association cortex. These results reveal a network of cortical and subcortical structures that are most consistently involved in secondarily generalized tonic-clonic seizures. Abnormal increased activity in subcortical structures (cerebellum, basal ganglia, brainstem and thalamus), along with decreased activity in the association cortex may be crucial for motor manifestations and for impaired consciousness in tonic-clonic seizures. Understanding the networks involved in generalized tonic-clonic seizures can provide insights into mechanisms of behavioural changes, and may elucidate targets for improved therapies.
Purpose-Absence seizures cause transient impairment of consciousness. Typical absence seizures occur in children, and are accompanied by 3-4 Hz spike-wave discharges (SWD) on EEG. Prior EEG-fMRI studies of SWD have shown a network of cortical and subcortical changes during these electrical events. However, fMRI during typical childhood absence seizures with confirmed impaired consciousness has not been previously investigated.Methods-We performed EEG-fMRI with simultaneous behavioral testing in 37 children with typical childhood absence epilepsy. Attentional vigilance was evaluated by a continuous performance task (CPT), and simpler motor performance was evaluated by a repetitive tapping task (RTT).Results-SWD episodes were obtained during fMRI scanning from 9 patients among the 37 studied. fMRI signal increases during SWD were observed in the thalamus, frontal cortex, primary visual, auditory, somatosensory, and motor cortex, and fMRI decreases were seen in the lateral and medial parietal cortex, cingulate gyrus, and basal ganglia. Omission error rate (missed targets) with SWD during fMRI was 81% on CPT and 39% on RTT. For those seizure epochs during which CPT performance was impaired, fMRI changes were seen in cortical and subcortical structures typically involved in SWD, while minimal changes were observed for the few epochs during which performance was spared.Discussion-These findings suggest that typical absence seizures involve a network of corticalsubcortical areas necessary for normal attention and primary information processing. Identification
The relationship between neuronal activity and hemodynamic changes plays a central role in functional neuroimaging. Under normal conditions and in neurological disorders such as epilepsy it is commonly assumed that increased functional magnetic resonance imaging (fMRI) signals reflect increased neuronal activity, and that fMRI decreases represent neuronal activity decreases. Recent work suggests these assumptions usually hold true in the cerebral cortex. However, less is known about the basis of fMRI signals from subcortical structures such as the thalamus and basal ganglia. We used Wistar Albino Glaxo rats of Rijswijk (WAG/Rij), an established animal model of human absence epilepsy, to perform fMRI studies with blood oxygen level dependent (BOLD) and cerebral blood volume (CBV) contrasts at 9.4 Tesla; as well as laser Doppler cerebral blood flow (CBF), local field potential (LFP), and multiunit activity (MUA) recordings. We found that during spike-wave discharges, the somatosensory cortex and thalamus showed increased fMRI, CBV, CBF, LFP and MUA signals. However, the caudate-putamen showed fMRI, CBV and CBF decreases despite increases in LFP and MUA signals. Similarly, during normal whisker stimulation the cortex and thalamus showed increases in CBF and MUA, while the caudate-putamen showed decreased CBF with increased MUA. These findings suggest that neuroimaging-related signals and electrophysiology tend to agree in the cortex and thalamus, but disagree in the caudate-putamen. These opposite changes in vascular and electrical activity indicate that caution should be applied when interpreting fMRI signals in both health and disease from the caudate-putamen, as well as possibly from other subcortical structures.
Summary:Purpose: Regions of seizure onset and propagation in human generalized tonic-clonic seizures are not well understood. Cerebral blood flow (CBF) measurements with single photon emission computed tomography (SPECT) during electroconvulsive therapy (ECT)-induced seizures provide a unique opportunity to investigate seizure onset and propagation under controlled conditions.Methods: ECT stimulation induces a typical generalized tonic-clonic seizure, resembling spontaneous generalized seizures in both clinical and electroencephalogram (EEG) manifestations. Patients were divided into two groups based on timing of ictal (during seizure) SPECT tracer injections: 0 s after ECT stimulation (early group), and 30 s after ECT (late group). Statistical parametric mapping (SPM) was used to determine regions of significant CBF changes between ictal and interictal scans on a voxel-by-voxel basis.Results: In the early injection group, we saw increases near the regions of the bitemporal stimulating electrodes as well as some thalamic and basal ganglia activation. With late injections, we observed increases mainly in the parietal and occipital lobes, regions that were quiescent 30 s prior. Significant decreases occurred only at the later injection time, and these were localized to the bilateral cingulate gyrus and left dorsolateral frontal cortex.Conclusions: Activations in distinct regions at the two time points, as well as sparing of intermediary brain structures, suggest that ECT-induced seizures propagate from the site of initiation to other specific brain regions. Further work will be needed to determine if this propagation occurs through corticalcortical or cortico-thalamo-cortical networks. A better understanding of seizure propagation mechanisms may lead to improved treatments aimed at preventing seizure generalization.
Partial seizures produce increased cerebral blood flow in the region of seizure onset. These regional cerebral blood flow increases can be detected by single photon emission computed tomography (ictal SPECT), providing a useful clinical tool for seizure localization. However, when partial seizures secondarily generalize, there are often questions of interpretation since propagation of seizures could produce ambiguous results. Ictal SPECT from secondarily generalized seizures has not been thoroughly investigated. We analysed ictal SPECT from 59 secondarily generalized tonic-clonic seizures obtained during epilepsy surgery evaluation in 53 patients. Ictal versus baseline interictal SPECT difference analysis was performed using ISAS (http://spect.yale.edu). SPECT injection times were classified based on video/EEG review as either pre-generalization, during generalization or in the immediate post-ictal period. We found that in the pre-generalization and generalization phases, ictal SPECT showed significantly more regions of cerebral blood flow increases than in partial seizures without secondary generalization. This made identification of a single unambiguous region of seizure onset impossible 50% of the time with ictal SPECT in secondarily generalized seizures. However, cerebral blood flow increases on ictal SPECT correctly identified the hemisphere (left versus right) of seizure onset in 84% of cases. In addition, when a single unambiguous region of cerebral blood flow increase was seen on ictal SPECT, this was the correct localization 80% of the time. In agreement with findings from partial seizures without secondary generalization, cerebral blood flow increases in the post-ictal period and cerebral blood flow decreases during or following seizures were not useful for localizing seizure onset. Interestingly, however, cerebral blood flow hypoperfusion during the generalization phase (but not pre-generalization) was greater on the side opposite to seizure onset in 90% of patients. These findings suggest that, with appropriate cautious interpretation, ictal SPECT in secondarily generalized seizures can help localize the region of seizure onset.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.