The main purpose of this study is to determine, via a three dimensions Finite Element analysis (FE), the stress and strain fields at the inner surface of a tubular specimen submitted to thermo-mechanical fatigue. To investigate the surface finish effect on fatigue behaviour at this inner surface, mechanical tests were carried out on real size tubular specimens under various thermal loadings. X ray measurements, Transmission Electron Microscopy observations and micro-hardness tests performed at and under the inner surface of the specimen before testing, revealed residual internal stresses and a large dislocation microstructure gradient in correlation with hardening gradients due to machining. A memory effect, bound to the pre-hardening gradient, was introduced into an elasto-visco-plastic model in order to determine the stress and strain fields at the inner surface. The temperature evolution on the inner surface of the tubular specimen was first computed via a thermo-elastic model and then used for our thermo-mechanical simulations. Identification of the thermo-mechanical model parameters was based on the experimental stabilized cyclic tension-compression tests performed at 20°C and 300°C. A good agreement was obtained between numerical stabilized tractioncompression cycle curves (with and without pre-straining) and experimental ones. This 3 dimensional simulation gave access to the evolution of the axial and tangential internal stresses and local strains during the tests. Numerical results showed: a decreasing of the tangential stress and stabilization after 40 cycles, whereas the axial stress showed weaker decreasing with the number of cycles. The results also pointed out a ratcheting and a slightly non proportional loading at the inner surface. The computed mean stress and strain values of the stabilized cycle being far from the initial ones, they could be used to get the safety margins of standard design related to fatigue, as well as to get accurate loading conditions needed for the use of more advanced fatigue analysis and criteria.
The paper deals with the modelling of turbine rotors, including a foundation and stator parts, and with their dynamic analysis. The dynamics of turbines can be strongly influenced by the effects of a rotor foundation, and therefore suitable modelling approaches should be developed to obtain proper analysis tools. The standard methods for the modelling of rotating shafts are summarized in the paper, and two approaches to including foundation effects into dynamic models are introduced. The approach based on the dynamic compliance of the foundation with respect to the rotor angular velocity is compared with the approach based on the modal synthesis of rotor and foundation models. The calculation of modal properties is then demonstrated, and the characteristics of both presented methods are discussed. A comparison of the steady-state dynamic response calculated using both methods is shown. It can be concluded that both approaches can be advantageously used for several analyses, and our final recommendations are given in the conclusions.
This study builds on experiments with different combinations of tension and torsion pre-stresses which were published in [1]. The results were particularized by new tests for combined pre-stresses in normal and shear components. The ratio between normal and shear pre-stresses was 3:2 in agreement with the coefficient kc. The same material structural low carbon ČSN 41 1523.1 steel after normalization annealing was used for specimens. The results were compiled and displayed in a three-dimensional Haigh diagram with normalized coordinates and interlaid by corresponding terminal lines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.