Nowadays the automotive industry is mainly focused on competition, and this fact forces vehicle producers to constantly look for improvements in the areas of quality and reliability. Life-span, flawless operation, and safety are directly interconnected. Therefore, much attention and resources are spent on research factors that affect the stated properties. Significant capital is invested in the optimization of the constructional solutions and innovative material applications related to the safety and durability of the constructions. This paper presents the results obtained while developing a new ecological three-wheeled vehicle. The main research areas were focused on replacing the original material with a light aluminum alloy, while achieving a substantial improvement in drivability for the three-wheeled vehicle by implementing a modified front wheel steering system. The submitted research achieved a weight reduction of the frame by 40 kg by applying light material substitution (EN AW 6063.T66), which will naturally have a positive impact on the range of the designed electric vehicle; furthermore, we implemented an innovative steering mechanism optimized during the experimental operations.
This study investigated the fatigue life of welded joints, in particular, the welds of the high-strength steel S960 QL. The welds were created using unconventional technologies by utilising laser and electron beams. The direct application of the research is intended to be carried out through implementing the results towards the design of tracks for the track-wheel chassis of the demining system Božena 5. The producer’s experience shows the damage found in the current track design. The damage occurred during reversing the vehicle on a sand surface. Our goal was to solve this problem. The information acquired in this research will be a very important input factor for further designs of the track made of the tested material and its welds. The analysis of the residual stresses was also part of this study. The experimental research of the tested material’s fatigue life and welded joints was realised on the specimens loaded using cyclic bending and cyclic torsion. These loads were dominant during the track operation. The fatigue life of the tested material was detected using a device designed by us. The measurement results were processed in the form of the Wöhler’s S–N curves (alternating stress versus number cycles to failure) and compared with the current regulations issued by the International Institute of Welding (IIW) in the form of the FAT curves (IIW fatigue class). The achieved research results indicate that the modern welding technologies (laser and electron beams) used on the high-strength steel had no principal influence on the fatigue life of the tested material.
Handling machines are increasingly being used in all sectors of the industry. Knowledge of the theory of transport and handling machines are basic prerequisites for their further technical development. Development in the field of manipulators is reflected not only in their high technical level, but also in increasing safety and economy. The article presents results of research focused on the complete engineering design of a manipulator, which will serve as a mean of the oblique transport of pelletised goods. The manipulator takes the form of a platform moving between two destinations by means of an electromotor. The engineering design of the platform including the track and a working principle is described. The design includes analytical and numerical calculations of main loaded components of the platform. Extensive functional and dimensional calculations serve as the base for preparation of the technical documentation. An important step will be the creation of a parametric model of the force and moment load acting on a platform drivetrain. Based on this, optimal parameters of an electromotor and its dimensional calculation are performed.
This article is divided into two parts—in the first part, authors inform about their testing device that enables the acquisition of results from uniaxial and multiaxial fatigue tests (the bending−torsion combination). We present the approaches used during designing and building the testing device. The direct implementation of the research in the second part will concentrate on implementing the acquired results for the frame design of a vehicle worked out by the authors. The three-wheeled vehicle has the front steered wheel suspended in an unconventional way. This original design can cause an increased load on the vehicle’s frame. This can be apparent mainly during driving through curves. Therefore, the fatigue curves of the tested material (EN AW 6063) will be implemented from the point of view of its usability in operation. A vehicle frame is most often loaded by bending and torsion. The authors assess the influence of welding on the fatigue life of this unique unconventional vehicle by determining the fatigue curves of the material for its production. The stresses achieved on the test specimens fully correspond to the load of the frame (in welds) during its operation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.