The flavo-enzyme DprE1 catalyzes a key epimerization step in the decaprenyl-phosphoryl d-arabinose (DPA) pathway, which is essential for mycobacterial cell wall biogenesis and targeted by several new tuberculosis drug candidates. Here, using differential radiolabeling with DPA precursors and high-resolution fluorescence microscopy, we disclose the unexpected extracytoplasmic localization of DprE1 and periplasmic synthesis of DPA. Collectively, this explains the vulnerability of DprE1 and the remarkable potency of the best inhibitors.
A combination of chemical genetic and biochemical assays was applied to investigate the mechanism of action of the anticancer drug 5-fluorouracil (5-FU), against Mycobacterium tuberculosis (Mtb). 5-FU resistance was associated with mutations in upp or pyrR. Upp-catalyzed conversion of 5-FU to FUMP was shown to constitute the first step in the mechanism of action, and resistance conferred by nonsynonymous SNPs in pyrR shown to be due to derepression of the pyr operon and rescue from the toxic effects of FUMP and downstream antimetabolites through de novo production of UMP. 5-FU-derived metabolites identified in Mtb were consistent with the observed incorporation of 5-FU into RNA and DNA and the reduced amount of mycolyl arabinogalactan peptidoglycan in 5-FU-treated cells. Conditional depletion of the essential thymidylate synthase ThyX resulted in modest hypersensitivity to 5-FU, implicating inhibition of ThyX by fluorodeoxyuridylate as a further component of the mechanism of antimycobacterial action of this drug.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.