This paper deals with the description of a drone management system for long-term missions called DronePort. First, the issue of long-term missions and possible approaches are outlined. Further, the individual components of proposed system, both hardware, and software are introduced. The DronePort system relies on battery swapping. By storing the battery in a battery compartment, the system is not strictly designed for one type of drone, but with simple modification, it is capable of maintaining a flight of various Vertical Take-Off and Landing (VTOL) drones. Afterward, more attention is paid to the simulation environment, which will greatly facilitate the development of the entire system. The simulation includes both drones equipped with a downfacing camera and a DronePort landing platform, which is fitted with an ArUco marker for precise landing. Next, the DronePort Traffic Control system is presented, which is tasked with communicating with the drones, scheduling battery swapping, and planning trajectories for the flight to and from the DronePort landing platform. The system uses the standard MAVLink protocol for communication, enabling use with a variety of MAVLink compatible drones. Finally, an example of collision-free trajectory planning considering battery capacity is presented. Trajectory was found in terms of Chebyshev pseudospectral optimal control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.