Airborne LiDAR produced large amounts of data for archaeological research over the past decade. Labeling this type of archaeological data is a tedious process. We used a data set from Pacunam LiDAR Initiative survey of lowland Maya region in Guatemala. The data set contains ancient Maya structures that were manually labeled, and ground verified to a large extent. We have built and compared two deep learning-based models, U-Net and Mask R-CNN, for semantic segmentation. The segmentation models were used in two tasks: identification of areas of ancient construction activity, and identification of the remnants of ancient Maya buildings. The U-Net based model performed better in both tasks and was capable of correctly identifying 60–66% of all objects, and 74–81% of medium sized objects. The quality of the resulting prediction was evaluated using a variety of quantifiers. Furthermore, we discuss the problems of re-purposing the archaeological style labeling for production of valid machine learning training sets. Ultimately, we outline the value of these models for archaeological research and present the road map to produce a useful decision support system for recognition of ancient objects in LiDAR data.
Certain post-thoracic surgery complications are monitored in a standard manner using methods that employ ionising radiation. A need to automatise the diagnostic procedure has now arisen following the clinical trial of a novel lung ultrasound examination procedure that can replace X-rays. Deep learning was used as a powerful tool for lung ultrasound analysis. We present a novel deep-learning method, automated M-mode classification, to detect the absence of lung sliding motion in lung ultrasound. Automated M-mode classification leverages semantic segmentation to select 2D slices across the temporal dimension of the video recording. These 2D slices are the input for a convolutional neural network, and the output of the neural network indicates the presence or absence of lung sliding in the given time slot. We aggregate the partial predictions over the entire video recording to determine whether the subject has developed post-surgery complications. With a 64-frame version of this architecture, we detected lung sliding on average with a balanced accuracy of 89%, sensitivity of 82%, and specificity of 92%. Automated M-mode classification is suitable for lung sliding detection from clinical lung ultrasound videos. Furthermore, in lung ultrasound videos, we recommend using time windows between 0.53 and 2.13 s for the classification of lung sliding motion followed by aggregation.
We have developed a device, the Rehapiano, for the fast and quantitative assessment of action tremor. It uses strain gauges to measure force exerted by individual fingers. This article verifies the device’s capability to measure and monitor the development of upper limb tremor. The Rehapiano uses a precision, 24-bit, analog-to-digital converter and an Arduino microcomputer to transfer raw data via a USB interface to a computer for processing, database storage, and evaluation. First, our experiments validated the device by measuring simulated tremors with known frequencies. Second, we created a measurement protocol, which we used to measure and compare healthy patients and patients with Parkinson’s disease. Finally, we evaluated the repeatability of a quantitative assessment. We verified our hypothesis that the Rehapiano is able to detect force changes, and our experimental results confirmed that our system is capable of measuring action tremor. The Rehapiano is also sensitive enough to enable the quantification of Parkinsonian tremors.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.