We consider the problem of online prediction when it is uncertain what the best prediction model to use is. We develop a method called Dynamic Model Averaging (DMA) in which a state space model for the parameters of each model is combined with a Markov chain model for the correct model. This allows the "correct" model to vary over time. The state space and Markov chain models are both specified in terms of forgetting, leading to a highly parsimonious representation. As a special case, when the model and parameters do not change, DMA is a recursive implementation of standard Bayesian model averaging, which we call recursive model averaging. The method is applied to the problem of predicting the output strip thickness for a cold rolling mill, where the output is measured with a time delay. We found that when only a small number of physically motivated models were considered and one was clearly best, the method quickly converged to the best model, and the cost of model uncertainty was small; indeed DMA performed slightly better than the best physical model. When model uncertainty and the number of models considered were large, our method ensured that the penalty for model uncertainty was small. At the beginning of the process, when control is most difficult, we found that DMA over a large model space led to better predictions than the single best performing physically motivated model. We also applied the method to several simulated examples, and found that it recovered both constant and time-varying regression parameters and model specifications quite well.
Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. We found that when only a small number of physically motivated models were considered and one was clearly best, the method quickly converged to the best model, and the cost of model uncertainty was small; indeed DMA performed slightly better than the best physical model. When model uncertainty and the number of models considered were large, our method ensured that the penalty for model uncertainty was small. At the beginning of the process, when control is most difficult, we found that DMA over a large model space led to better predictions than the single best performing physically motivated model. AbstractWe consider the problem of online prediction when it is uncertain what the best prediction model to use is. We develop a method called Dynamic Model Averaging (DMA) in which a state space model for the parameters of each model is combined with a Markov chain model for the correct model. This allows the "correct" model to vary over time. The state space and Markov chain models are both specified in terms of forgetting, leading to a highly parsimonious representation. The method is applied to the problem of predicting the output strip thickness for a cold rolling mill, where the output is measured with a time delay. We found that when only a small number of physically motivated models were considered and one was clearly best, the method quickly converged to the best model, and the cost of model uncertainty was small; indeed DMA performed slightly better than the best physical model. When model uncertainty and the number of models considered were large, our method ensured that the penalty for model uncertainty was small. At the beginning of the process, when control is most difficult, we found that DMA over a large model space led to better predictions than the single best performing physically motivated model.
Optimal stochastic controller pushes the closed-loop behavior as close as possible to the desired one. The fully probabilistic design (FPD) uses probabilistic description of the desired closed loop and minimizes Kullback-Leibler divergence of the closed-loop description to the desired one. Practical exploitation of the fully probabilistic design control theory continues to be hindered by the computational complexities involved in numerically solving the associated stochastic dynamic programming problem; in particular, very hard multivariate integration and an approximate interpolation of the involved multivariate functions. This paper proposes a new fully probabilistic control algorithm that uses the adaptive critic methods to circumvent the need for explicitly evaluating the optimal value function, thereby dramatically reducing computational requirements. This is a main contribution of this paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.