This article describes the principles and limitations of methods used to investigate reactive oxygen species (ROS) protective properties of dietary constituents and is aimed at providing a better understanding of the requirements for science based health claims of antioxidant (AO) effects of foods. A number of currently used biochemical measurements aimed of determining the total antioxidant capacity and oxidised lipids and proteins are carried out under unphysiologcial conditions and are prone to artefact formation. Probably the most reliable approaches are measurements of isoprostanes as a parameter of lipid peroxidation and determination of oxidative DNA damage. Also the design of the experimental models has a strong impact on the reliability of AO studies: the common strategy is the identification of AO by in vitro screening with cell lines. This approach is based on the assumption that protection towards ROS is due to scavenging, but recent findings indicate that activation of transcription factors which regulate genes involved in antioxidant defence plays a key role in the mode of action of AO. These processes are not adequately represented in cell lines. Another shortcoming of in vitro experiments is that AO are metabolised in vivo and that most cell lines are lacking enzymes which catalyse these reactions. Compounds with large molecular configurations (chlorophylls, anthocyans and polyphenolics) are potent AO in vitro, but weak or no effects were observed in animal/human studies with realistic doses as they are poorly absorbed. The development of -omics approaches will improve the scientific basis for health claims. The evaluation of results from microarray and proteomics studies shows that it is not possible to establish a general signature of alterations of transcription and protein patterns by AO. However, it was shown that alterations of gene expression and protein levels caused by experimentally induced oxidative stress and ROS related diseases can be normalised by dietary AO.
Cannabidiol (CBD) and cannabidivarin (CBDV) are natural cannabinoids which are consumed in increasing amounts worldwide in cannabis extracts, as they prevent epilepsy, anxiety, and seizures. It was claimed that they may be useful in cancer therapy and have anti-inflammatory properties. Adverse long-term effects of these drugs (induction of cancer and infertility) which are related to damage of the genetic material have not been investigated. Therefore, we studied their DNA-damaging properties in human-derived cell lines under conditions which reflect the exposure of consumers. Both compounds induced DNA damage in single cell gel electrophoresis (SCGE) experiments in a human liver cell line (HepG2) and in buccal-derived cells (TR146) at low levels (≥ 0.2 µM). Results of micronucleus (MN) cytome assays showed that the damage leads to formation of MNi which reflect chromosomal aberrations and leads to nuclear buds and bridges which are a consequence of gene amplifications and dicentric chromosomes. Additional experiments indicate that these effects are caused by oxidative base damage and that liver enzymes (S9) increase the genotoxic activity of both compounds. Our findings show that low concentrations of CBD and CBDV cause damage of the genetic material in human-derived cells. Furthermore, earlier studies showed that they cause chromosomal aberrations and MN in bone marrow of mice. Fixation of damage of the DNA in the form of chromosomal damage is generally considered to be essential in the multistep process of malignancy, therefore the currently available data are indicative for potential carcinogenic properties of the cannabinoids.Electronic supplementary materialThe online version of this article (10.1007/s00204-018-2322-9) contains supplementary material, which is available to authorized users.
Glyphosate (G) is the largest selling herbicide worldwide; the most common formulations (Roundup, R) contain polyoxyethyleneamine as main surfactant. Recent findings indicate that G exposure may cause DNA damage and cancer in humans. Aim of this investigation was to study the cytotoxic and genotoxic properties of G and R (UltraMax) in a buccal epithelial cell line (TR146), as workers are exposed via inhalation to the herbicide. R induced acute cytotoxic effects at concentrations > 40 mg/l after 20 min, which were due to membrane damage and impairment of mitochondrial functions. With G, increased release of extracellular lactate dehydrogenase indicative for membrane damage was observed at doses > 80 mg/l. Both G and R induced DNA migration in single-cell gel electrophoresis assays at doses > 20 mg/l. Furthermore, an increase of nuclear aberrations that reflect DNA damage was observed. The frequencies of micronuclei and nuclear buds were elevated after 20-min exposure to 10-20 mg/l, while nucleoplasmatic bridges were only enhanced by R at the highest dose (20 mg/l). R was under all conditions more active than its active principle (G). Comparisons with results of earlier studies with lymphocytes and cells from internal organs indicate that epithelial cells are more susceptible to the cytotoxic and DNA-damaging properties of the herbicide and its formulation. Since we found genotoxic effects after short exposure to concentrations that correspond to a 450-fold dilution of spraying used in agriculture, our findings indicate that inhalation may cause DNA damage in exposed individuals.
Quaternary ammonium compounds (QACs) are cationic surfactants that are widely used as disinfectants. In the present study, we tested two important representatives, namely, benzalkonium chloride (BAC) and dimethyldioctadecyl-ammonium bromide (DDAB) in four genotoxicity tests, namely, in the Salmonella/microsome assay with strains TA 98, TA 100 and TA 102, in the single-cell gel electrophoresis (SCGE) assay with primary rat hepatocytes and in micronucleus (MN) assays with peripheral human lymphocytes and with root tip cells of Vicia faba. In the bacterial experiments, consistently negative results were obtained in the dose range between 0.001 and 110 microg per plate in the presence and absence of metabolic activation while significant induction of DNA migration was detected in the liver cells. With BAC, a moderate but significant effect was found with an exposure concentration of 1.0 mg/l while DDAB caused damage at lower doses (0.3 mg/l). The effects were not altered when the nuclei were treated with formamidopyridine glycosylase, indicating that they are not due to formation of oxidized purines. The MN assays with blood cells were carried out under identical conditions to the SCGE experiments and a significant increase was seen at the highest dose levels (BAC: 1.0 and 3.0 mg/l; DDAB: 1 mg/l). Both compounds also caused significant induction of MN as well as inhibition of cell division in plant cells, the lowest effective levels were 1.0 and 10 mg/l for DDAB and BAC, respectively. Our findings show that both chemicals induce moderate but significant genotoxic effects in eukaryotic cells at concentrations which are found in wastewaters and indicate that their release into the environment may cause genetic damage in exposed organisms. Furthermore, the direct contact of humans to QAC-containing detergents and pharmaceuticals that contain substantially higher concentrations than those which were required to cause effects in eukaryotic cells in the present study should be studied further in regard to potential DNA-damaging effects in man.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.