This paper is focused on investigation of psychological stress in speech signal using shapes of normalised glottal pulses. The pulses were estimated by two algorithms: the Direct Inverse Filtering and Iterative and Adaptive Inverse Filtering. Normalised glottal pulses are divided into opening and return phase, and a feature vector characterizing each glottal pulse is calculated for a series of n-percentage interval in time domain. Each feature vector is created by parameters describing its return-to-opening phase ratio, namely chosen intervals, kurtosis, skewness, and area. Further, psychological stress is detected by feature vector and four different classifiers. Experimental results show, that the best accuracy approaching 95 % is reached with Gaussian Mixture Models classifier. All the best results were obtained regarding only the interval of 5 % from both phase durations, i.e. for and after pulse peak, where the most significant differences between normal and stressed speech in feature vector are occurred. Presented experiments were performed on our own speech database containing both real stressed speech and normal speech.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.