Background: Indoor air pollution remains an important health problem in some countries. Although research data on this issue is available, routine monitoring in affected areas is limited. The aims of this study were to quantify exposure to biomass-related indoor air pollution; assess the respiratory health of subjects; and explore the feasibility of routine monitoring in Kwale district, Kenya. Methods:We sampled 125 rural houses using short-term monitoring for levels of CO, CO 2 and TSP. Additional exposure information was obtained using a checklist. Respiratory health was also assessed using a questionnaire, and electronic spirometer in 172 inhabitants.
Results:The overall median levels of CO in the sampled houses on all study sites ranged from 5.9 (IQR 3-14.5) to 10 (5.5-21.2) mg/m3, levels of CO 2 ranged from 774 (IQR 724-846) to 839 (IQR 749-961) mg/m3) and the levels of TSP ranged from 295 (IQR 79-853 to 1384 (IQR 557-3110) µg/m 3 which indicates that safe levels recommended by WHO and USEPA could be exceeded. Relatively high incidences of respiratory illness or symptoms were reported and the spirometry readings suggested impaired lung function in over 80% of respondents. Conclusion: Our results quantify that the use of biomass fuel can give rise to high levels of indoor air pollution. Given that poor lung function contributes to public health problems in rural regions of East Africa, such as Kwale in Kenya, our findings create grounds for more detailed investigations of the problem and may provide motivation for community based interventions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.