Head and neck squamous cell carcinoma is one of the most aggressive tumours and is typically diagnosed too late. Late diagnosis requires an urgent decision on an effective therapy. An individualized test of chemosensitivity should quickly indicate the suitability of chemotherapy and radiotherapy. No ex vivo chemosensitivity assessment developed thus far has become a part of general clinical practice. Therefore, we attempted to explore the new technique of coherence-controlled holographic microscopy to investigate the motility and growth of live cells from a head and neck squamous cell carcinoma biopsy. We expected to reveal behavioural patterns characteristic for malignant cells that can be used to imrove future predictive evaluation of chemotherapy. We managed to cultivate primary SACR2 carcinoma cells from head and neck squamous cell carcinoma biopsy verified through histopathology. The cells grew as a cohesive sheet of suspected carcinoma origin, and western blots showed positivity for the tumour marker p63 confirming cancerous origin. Unlike the roundish colonies of the established FaDu carcinoma cell line, the SACR2 cells formed irregularly shaped colonies, eliciting the impression of the collective invasion of carcinoma cells. Time-lapse recordings of the cohesive sheet activity revealed the rapid migration and high plasticity of these epithelial-like cells. Individual cells frequently abandoned the swiftly migrating crowd by moving aside and crawling faster. The increasing mass of fast migrating epithelial-like cells before and after mitosis confirmed the continuation of the cell cycle. In immunofluorescence, analogously shaped cells expressed the p63 tumour marker, considered proof of their origin from a carcinoma. These behavioural traits indicate the feasible identification of carcinoma cells in culture according to the proposed concept of the carcinoma cell dynamic phenotype. If further developed, this approach could later serve in a new functional online analysis of reactions of carcinoma cells to therapy. Such efforts conform to current trends in precision medicine.
Overview Introduction: Bonebridge is a direct bone conduction hearing implantable system. The aim of the work is to present pilot results of rehabilitation of single sided deafness using this system. Material and methods: Analysis of three patients with single-sideded deafness, who underwent BB implantation in 2018 at the Department of Otorhinolaryngology and Head and Neck Surgery of St. Anna Hospital in Brno. Evaluation parameters: Bern Benefi t in Single-Sided Deafness Questionnaire, experimental examination of directional hearing and hearing in noise test. Results: Questionnaire: Within the visual analog scale in the range of –5 to +5 points, the average rating was + 2.4 points, so listening was rated as easier with Bonebridge than without hearing aids. The ability to locate the sound source was evaluated by 4 and 0–1 points in one and two respondents, respectively. Examination of spatial hearing: without hearing aid, the ability to locate the sound source was signifi cantly impaired in all the examined. With Bonebridge, with a tolerated deviation of 45°, the success rate of sound source localization was 75–100% in the range of 0–360° in the horizontal plane. Hearing in noise test: the greatest improvement in intelligibility (by 30–100%) was achieved with Bonebridge at SNR –5 dB. Conclusion: Bonebridge is not able to restore binaural hearing in patients with single sided deafness, it is a pseudo-binaural correction. Like other implantable bone conduction systems, Bonebridge is benefi tial for patients with single sided deafness in a variety of listening situations. Using experimental audiological tests, the contribution of Bonebridge to understanding sentences in acoustic noise and improving the ability to locate the sound source was found. However, validation of the results would require a larger number of probands. Keywords: single-sided deafness – BAHD – Bonebridge – bone conduction hearing implant – hearing in noise – directional hearing test
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.